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Introduction

p-wave superfluid/superconductor: 
3He, p-wave Feshbach resonance, Sr2RuO4, Non-centrosymmetric SC

 Ginzburg-Landau equation: Macroscopic scale physics

Spontaneous mass flow, textures, (Tsutsumi et al., Poster)

 Quasiclassical Eilenberger equation: Intermediate region
Spontaneous mass flow and textures self-consistently determined from 
quasiparticle states (Ichioka et al.)
Valid for the weak coupling regime 

 Bogoliubov-de Gennes equation: Microscopic scale physics

Quasiparticle excitations in quantum limit 
Applicable to the strong coupling regime beyond the BCS regime

⇒　zero energy Majorana states appear in chiral p-wave SF’s with vortices
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Core bound states in WEAK coupling limit

Zero Energy States in Spin-Polarized p-Wave SF
Axisymmetric vortex in 2D s-wave pairing state
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Axisymmetric vortex in “spinless” chiral p-wave state

w: odd w: even

s-wave Non-zero Non-zero

p-wave zero Non-zero

The lowest energy of the core-bound states
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Fractional vortex

Order parameter in 2D plate

θ = 0

θ = π

θ = π/2 ⇒ d-vector rotates in xy plane: H//z

Symmetry of d-vector

Gapful

⇒ Low-energy excitation equivalent to the singular vortex of chiral kx+iky pairing

See, D. Ivanov, PRL 86, 268 (2001)

Singular vortex

Zero Energy States in “Spin-Triplet” p-Wave SF
e.g., 3He-A phase between parallel plates
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Zero Energy Quasiparticles
Bogoliubov quasiparticleE

Zero energy quasiparticle: consists of the equivalent contribution
from the particle and hole

self-conjugate operator = Majorana fermion

⇒　Novel algebraic aspect (a type of non-abelian anyons)

Aim

 Stability of zero energy Majorana fermions in p-wave superfluids with single vortex, 
    especially, in atomic gases near p-wave Feshbach resonance

 Are they topologically protected against the vortex-vortex interaction?



Bogoliubov-de Gennes equation

Diagonalization with
finite element method based on discrete variable representation
shift-invert Lanczos/Arnoldi method 

Gap equation

Conservation of particle number

The logarithmic divergence on the cutoff energy can not be removed 
by replacing “g” to renormalized one

chiral p-wave state in 2D

Axisymmetric vortex state with odd winding number is assumed

BCSBEC



Dimensionless pairing interaction
BCSBEC

Low-Energy Spectrum near p-Wave Resonance

Bulk excitation energy

µ ∼ EF
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BCS-BEC topological transition



2wπ

Dispersion of Edge States

Axisymmetric chiral p-wave state with winding number w

Edge states

Andreev bound states at the edge SF
μ>0

Vacuum
μ<0 SF

N
SF

QP scattering at the wall 1D S/N/S junction

e.g., Stone and Roy, PRB ’04

Zero energy “edge” state appears if w is ODD



doubly degenerate
zero energy states

Weak coupling BCS regime Wave functions of the lowest eigenstates
core-bound state edge-bound state

The wave function is bound at the core and edge 

2 length scale 

Pairing interaction

BCS-BEC transition point

Wave functions of the lowest eigenstates

Spatial variation having long wavelength
leads to the overlap between edge- and core-
wave functions. 



 Quasiparticle excitations with zero energy appear if chiral p-wave superfluids have 

    single vortex with ODD winding number

 The zero energy “Majorana” fermions are bound at the vortex core and edge 

    in the weak coupling BCS regime.

 The Majorana fermions survive until the BCS-BEC transition point, 

    and vanish in the BEC phase (gapful excitation), where the low energy excitation

    in BEC regime is trivial, which is determined by the chemical potential.

 At the transition point, the spatial overlap between core- and edge-bound 

    wavefunctions gives rise to the splitting of the degenerate zero energy eigenstates. 

-TM, Ichioka, Machida, PRL 101, 150409 (2008)

-Tsutsumi, Kawakami, TM, Ichioka, Machida, PRL 101, 135302 (2008) 

Summary on Single Vortex



Complex fermion

Vacuum of complex fermions

occupied state

Zero energy Majorana fermions

Pauli matrices

Non-Abelian Braiding Statistics
Ivanov, PRL 86, 268 (2001)

“Exchange”

Braiding vortices ⇒ “Quantum circuit”

Non-Abelian statistics of vortices

Kitaev, Ann. Phys. 303, 2 (2003)
Freedman et al., Commun. Math. Phys. 227, 605 (2003)

Exchange

⇒ Pair annihilation of zero energy Majorana fermions

Degenerate ground states: 

|1〉L|1〉R "→ |1〉L|1〉R + b|0〉L|0〉R



Questions

Dilute limit Dense limit

Giant vortex with EVEN winding number
↓

No zero energy excitations!

?Intermediate region?

Each vortex involve zero energy states

Robustness of zero energy states against the vortex interaction & external disturbances

e.g., vortex distance Dv, vortex number Nv, pinning potential, ...

2 vortices

Aim

The zero energy states are topologically protected (?)



Orbital motion
(chiral state)

Center-of-mass motion
(Vortices)
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Bogoliubov-de Gennes equation

Setting up the Model

Number of vortices: Nv

Distance between vortices: Dv



2-Vortex System

Separated core-bound state
with zero energy

Majorana fermions

Wave functions of the lowest excitations Wave functions of the lowest excitations

Overlap between core-bound states
⇒ bonding and anti-bonding states



Splitting of eigenenergies of the lowest core-bound states

δE ∼ e−Dv/2ξ

Dilute regime

Dilute regime

Doubly degenerate zero energy states appears in the DILUTE LIMIT,
which are exponentially shifted from zero as the vortex distance (Dv) becomes narrow

vortex interaction

doubly degenerate
zero energy states



Splitting of eigenenergies 
of core-bound states

3-Vortex System

vortex interaction

quadruply degenerate
zero energy states

doubly degenerate
zero energy states still remain

Vortex configuration

Wave functions of zero energy states
in the dilute regime

dilutedense



2π

2π
2π

2wπ

The lowest edge state in odd Nv systems always have zero energy
where the robustness is independent of Dv
(odd winding number is not necessary).

✓In the case of Nv > 1

In an axisymmetric vortex with Nv=1

Protection of Zero Energy States

⇒　Zero energy “edge” state appears if w is odd

E
✓Particle-hole symmetry of BdG eigenstates

The total number of BdG eigenstates is mod 2

in addition to the edge state, the another zero energy state
must appear if Nv is ODD.



Concluding Remarks

Robustness of zero energy “Majorana” states in chiral p-wave SF with many vortices

1. Even number Nv

✓The eigenenergies of the lowest core-bound states are exponentially lifted
   from the zero as vortex interaction increases

2. Odd number Nv

✓The zero energy states appear in the dilute limit, whose wave functions 
   are bounded at the core

✓Zero energy states bound at CORE and EDGE appear in the dilute limit

✓Two of them always remain zero energy, 
   and the robustness is independent of vortex distance and external disturbances

The full self-consistent calculation qualitatively reproduces the results obtained by 
the test potential ansatz

-TM and Machida, in preparation



✓How to observe the “Majorana” fermions in atomic gases and 3He-A
   --The zero energy states may be detectable with 
     the spatially resolved rf measurement, 
     i.e., the probe of LDOS.

✓Microscopic simulation of braiding vortices
   with the zero energy quasiparticles

Remaining problems

Y. Shin et al., PRL 99, 090403 (2008)

Degenerate ground states

universal matrix determined by vortex exhange


