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Andreev Saint-James Bound States (ABS)
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Resonant states 
in normal metal. L ~ ξ

SABS are intrinsic to surface of 
anisotropic BCS states.



Kashiwaya et al. 
PRB 70, 094501 
(2004)

Zero bias conductance peak

tunneling of YBCO junction
Sr2RuO4

Laube et al. 
PRL 84, 
1595 (2000)



By Yukio Tanaka, superclean (2005)



In BW states, anti-symmetry is broken

yx ipp +=∆ σσσ

No sharp peak at zero energy but 
a broad SABS band appears.
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Vorontsov, Sauls, 2003
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SDOS in BW state

∆*

EF Δ

Zero energy state is intrinsically suppressed at S > 0.
Bandwidth (∆*) is broader at S > 0.
Flat surface bound states band at S = 0.

Nagato et al. JLTP 1998



Quasiparticles scattering by a wall

Diffusive limitSpecular limit

S = 0S = 1

S can be controlled continuously 
by thin 4He layers on a wall.



Measurements
Transverse acoustic impedance of AC-cut quartz in 3He
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Hydrodynamics region 　　ωτ << 1
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Equivalent to c velocity and 
α damping measurements

weakly damped
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Equivalent to η viscosity 
measurements

critically damped



2. Review on SABS in B phase
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No change in Z at Tc

Broad peak in Z’ at 
low T.

In B phase 

29 MHz 
48 MHz*∆∆ω +=h

Aoki et al. PRL 2005



S dependence of ∆*(T)/∆(T)
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Z(ω/∆)

single peak

Murakawa et al. to be published



Summary 2

0 1 20

1

2

3

4

ω / ∆bulk

S
D

O
S

 s = 1.0
 s = 0.5
 s = 0.0

∆*

Broadening at larger S

Suppression of SDOS at Fermi energy at larger S

Nagato et al. JLTP 1998



3. Superfluidity of 4He films pressurized by 3He.



Evaluate S from Z in normal fluid
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S vs 4He layers and P
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S is larder for thicker 4He.
is smaller at higher P.



Z in normal 3He with 4He coating

Z’ deviates and 
decrease at low T.
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Is Tc superfluid transition 
temperature of 4He?



4He layer dependence
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Pressure dependence
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Frequency dependence

Tc depends on frequency. KT-like
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Preliminary analysis by Hieda 
at Nagoya Univ.

● ● Hieda et al. JPSJ 2009



Summary 3

S increases below Tc.

KT transition or other?

Pressure effect on Tc?

3He  dissolved.

Increase of inert layers.

Strong correlation effect.



4. Acoustic response of superfluid 3He 
at high magnetic field.



A phase at 0 field.
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A2 A1

Frequency 
dependence 
at 5 T

experiment
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47.1 MHz

66.0 MHz



A2 A1

Frequency 
dependence, 
theory

9.42 MHz

28.3 MHz

47.1 MHz

66.0 MHzNagato et al. 
unpblished



Magnetic field dependence, experiment
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Magnetic field dependence, theory

0.6 T

5 T

10 T

Weak coupling limit; ∆ and ∆ are independent.

Nagato et al. unpublished



30 MHz

Theory neglect the strong coupling effect.

Magnetic scattering effect ?



Any metastable state in A2 phase?



Summary 4

Drop in Z is larger in A1 phase than 
in A2 phase.

This anomalous asymmetry is 
pronounced at  high frequency.

At 10 MHz, Z sometimes increases 
rather than drops. 

A new manifestation of strong coupling effect?


