Study on Superfluid ³He in Aerogel using the Fourth Sound Resonance

K. Obara, T. Matsukura, C. Kato, Y. Nago, H. Yano, O. Ishikawa and T. Hata

³He in Aerogel

The Fourth Sound

The fourth sound is the pressure wave that propagates in a superleak. In an ideal straight superleak, only ρ_s can oscillate, so that it is an inviscid \rightarrow loss less flow.

superleak :

the structure which blocks the motion of ρ_n due to its finite viscosity η and allows ρ_s to pass through.

effective path

radius of $R \ll \delta_v = \sqrt{\frac{2\eta}{\rho\omega}}$ penetration

viscous depth

4th Sound in Viscous Regime

Under a fixed boundary condition, ρ_n is forced to oscillate in an opposite phase of \mathbf{v}_s in order to compensate the pressure gradient. Motion of $\rho_n \rightarrow$ energy loss

$$\begin{split} \omega^2 &= c_4^2 q^2 - i\omega q^2 \frac{\rho_n}{\rho} c_1^2 \frac{1}{8} R^2 \frac{\rho_n}{\eta} \left[1 + \frac{4\zeta}{R} \right] & q: \text{ wave number} \\ \zeta: \text{ slip length} \\ R: \text{ pore radius} \\ C_4^2 &= \text{Re } \omega^2/q^2 \implies \frac{\rho_s}{\rho} = \left(\frac{C_4}{C_1} \right)^2 & \text{ compression wave} \\ c_1: \text{ ordinary} \\ compression wave \\ velocity \\ \eta: \text{ shear viscosity} \\ \text{Energy Loss } : Q^{-1} = -\arg \omega^2 = \frac{1}{4} \frac{\rho_n}{\rho_s} \left(\frac{R}{\delta_\nu} \right)^2 \left[1 + \frac{4\zeta}{R} \right]. \end{split}$$

Jensen, JLTP 55,469(1984), JLTP 51,81(1983) Nagai, JLTP 42,227(1981), JLTP 41,473 (1980)

Energy loss can be obtained from FWHM of the spectrum.

amplent pressure 29, 23, 10 par

Frequency Spectrum

Result & Discussion

suppression of $\rho_{\rm s}$ due to the pair breaking.

Finite ρ_n at $T \rightarrow 0$

Pressure insensitive.

Energy Loss of the 4th sound in aerogel is smaller than that of pure case. ???

Why not viscosity but Friction?

In the viscous regime,

$$\delta_{\nu} = \sqrt{\frac{2\eta}{\rho_n \omega}}, \quad \eta = \frac{1}{5} n p_F \lambda_{tr}.$$

the viscosity should be suppressed due to the contraction of λ_{tr} by aerogel

$$\begin{split} \rho_n^{\ aero} &> \rho_n^{\ aero} \text{ and } \delta_v^{\ aero} < \delta_v^{\ aero} \\ \text{means...} \\ Q^{-1}_{\ aero} \text{ should be larger than } Q^{-1}_{\ pure} \\ & \text{in the viscous regime} \\ Q^{-1} &= \frac{1}{4} \frac{\rho_n}{\rho_s} \left(\frac{R}{\delta_v} \right) \left[1 + \frac{4\zeta}{R} \right]. \end{split}$$

Going back to raw data, spectra were Lorentzian and Q^{-1} showed no amplitude dependence.

 \rightarrow the damping force is prop to velocity.

If not viscous, friction is a candidate.

frictional damping force

$$oldsymbol{F}_d = rac{
ho_n}{ au_f} \left[oldsymbol{v}_n - oldsymbol{v}_a
ight]$$

Collision Drag Effect

Virtually allows the minutes oscillation of the aerogel strands in a macroscopic picture: flow of "**superfluid** & **normal fluid** + **aerogel complex**"

"collision drag effect" aerogel drags ρ_n

microscopic picture

QP

$$\boldsymbol{J} = \rho \left[Y(\omega) \boldsymbol{v}_a + (1 - Y(\omega)) \, \boldsymbol{v}_s \right]$$

using quasiclassical Green's function theory,

$$Y(\omega) = \frac{m^*}{m} \frac{1 - K_1(\omega)}{1 + (1/3)F_1^s(1 - K_1(\omega))}$$

$$K_1(0) = \frac{\rho_s^0}{\rho}, \quad Y(0) = \frac{\rho_n}{\rho}$$

and then, take the decoupling limit (i.e. rigid aerogel)

$$(z^2 - c_1^2) (z^2 - c_2^2) + i \left(\frac{4\eta_n \omega}{3\rho_n} + \frac{z^2}{\omega \tau_f}\right) (z^2 - c_4^2) = 0 \quad Q^{-1} = \frac{\rho_n}{\rho_s} \omega \tau_f$$

M. Miura, S. Higashitani, M. Yamamoto, and K. Nagai, JLTP **134**, 843 (2004). S. Higashitani, M. Miura, M. Yamamoto, and K. Nagai, PRB **71**, 134508 (2005). S. Higashitani, M. Miura, M. Yamamoto, and K. Nagai, JLTP **138**, 147 (2005).

Result & Discussion Frictional relaxation time $\tau_f = \frac{\rho_s}{\rho_n} Q^{-1}$ 1.2 140 **99.0**% **99.0**% 120 1.0 Aerogel Aerogel $\tau_{f_{90}}$ (peak) 100 $\begin{bmatrix} 2 \\ 80 \end{bmatrix}_{f} \begin{bmatrix} 80 \\ 60 \end{bmatrix}$ _____0.4 **40** 29 bar 0.2 23 bar $\mathbf{20}$ 10 bar 0.0 Û 0.2 0.8 0.8 0.4 0.2 0.6 0 0.6 0 0.4 $\ddot{T} / T_{\rm C}$ scaled by peak value •The lower *P*, the shorter τ_f au_f (peak) & T_C same coherence length • ρ_n strongly trapped by aerogel (a) $T \rightarrow 0$ dependence

Compare with Theory

This broad peak structure has already predicted by the numerical study.

the absolute value is 30 times lager, though.

$$\tau_f = \lim_{\omega \to 0} \frac{1 - Y(0) / Y(\omega)}{i\omega}$$

[S. Higashitani et. al., PRB,71,134508(2005)] *****modification $\tau_f / \tau_f (T_C) \rightarrow \tau_f / \tau_f$ (peak)

competition between $Y(0) \& Y(\omega)$ leads the peak

Summary

- •The fourth sound experiment in 99.0% open aerogel. B-like phase only.
- • ρ_s depends only weakly on pressure, but $Q^{-1}(T)$ or $\tau_f(T)$ depends on pressure.
- • $\tau_f(T)$ are scaled by T_C and τ_f^{peak} (or hopefully $\tau_f(T_C)$?)
- • $\tau_f(T)$ shows a broad peak, which is predicted by the quasiclassical Green's function study.
- •The origin of the energy loss of the 4th sound resonance is the momentum transfer during the scattering between QP at mid-gap state and the aerogel, which is characterized by $\tau_f(T)$.

Future works

Porosity dependenceSimple geometry