Stability criterion of superfluidity in the presence of potential barrier

Yusuke Kato(A03) (Dept. of Basic Science, Univ. Tokyo)

collaborators

- **S. Watabe** (Dept. Phys. Univ.Tokyo)
- D. Takahashi (Dept. of Basic. Science. Univ. Tokyo)

Critical velocity of superfluidity (Earlier studies)

_andau's criterion
$$v_c = \min\left(\frac{\varepsilon(p)}{p}\right) := v_{cl}$$

In reality, vc << vc,Landau, ; vortex creation in Cold Atoms

Onofrio et al. 2000

He4; Mobile impurity(Takahashi-Kono)

Vibrating wire (Yano et al.)

Numerical works of Gross-Pitaevskii eq.

2D problem; Vc for flow around a disk Frisch et al. 1992

Critical current of flow against the potential barrier(1dGP)

Summary of current status

- Flow in the presence of repulsive potential wall
 → gray soliton (+phonon) creation
- Flow in the presence of extremely small potential

 \rightarrow Landau instability

Flow around a disk

 \rightarrow <u>vortex creation;</u>

Q. Does a unified criterion exist?

Clue for solution

Landau criterion \rightarrow eigenenergy of excited states $\mid \longrightarrow$ Spectral function \geq

- soliton generation \rightarrow <u>wavefunction</u> of excited states
- Applicability to inhomogeneous system \rightarrow spectral function of <u>a local quantity</u>

Our proposal: Description by local density spectral function

$$\hat{n}(x) := \hat{\psi}^{\dagger}(x)\hat{\psi}(x) - \langle \mathbf{g}|\hat{\psi}^{\dagger}(x)\hat{\psi}(x)|\mathbf{g}\rangle$$
$$\rho(x,\epsilon) = \sum_{l} \langle l|\hat{n}(x)|\mathbf{g}\rangle|^{2}\delta(\epsilon - E_{l} + E_{\mathbf{g}})$$

When $\epsilon
ightarrow 0$ $ho(m{r},\epsilon) \propto \epsilon^{eta}$,

 $\begin{aligned} \beta &= d, & \text{for } v < v_{\rm c} \\ \beta &< d, & \text{for } v = v_{\rm c} \end{aligned}$

In *d*-dimension

Flow in the presence of repulsive potential wall(1dGP+Bogoliubov)

Results for d=1 (repulsive potential)

$$\begin{aligned} \rho(x, \epsilon) &\propto 1/\epsilon & v = v_{\rm c} \\ \rho(x, \epsilon) &\propto \epsilon & v < v_{\rm c} \end{aligned}$$

00

0.05

0.10 ε

For 3D system

0.15

0.20

Generalization to d=2,3 (repulsive potential)

$$\rho(x,\epsilon) \propto \frac{\epsilon^{d-2}}{\epsilon^d} \quad \begin{array}{l} v(x \to \pm \infty) = v_{\rm c} \\ v(x,\epsilon) \propto \frac{\epsilon^d}{\epsilon^d} \quad v(x \to \pm \infty) < v_{\rm c} \end{array}$$

Reduction to Landau's criterion (1/2)

In the weak barrier limit, system becomes spatially uniform and hence

$$\rho(x,\epsilon) = \rho(\epsilon) = \int \frac{\mathrm{d}\boldsymbol{q}}{(2\pi)^d} \underbrace{S(\boldsymbol{q},\epsilon)}_{\boldsymbol{X}}$$

"Dynamical structure factor"

In the weak current limit of Bogoliubov theory,

$$S(\boldsymbol{q},\epsilon) \propto |\boldsymbol{q}|\delta(\epsilon - E_{\mathrm{BG}}(\boldsymbol{q}))$$

$$\rho(\epsilon) \sim \int \frac{\mathrm{d}\boldsymbol{q}}{(2\pi)^d} |\boldsymbol{q}|\delta(\epsilon - E_{\mathrm{BG}}(\boldsymbol{q})) \sim \epsilon \underbrace{\int \frac{\mathrm{d}\boldsymbol{q}}{(2\pi)^d} \delta(\epsilon - E_{\mathrm{BG}}(\boldsymbol{q}))}_{(2\pi)^d}$$

"Density of one-particle states"

$$\sim \epsilon \times \epsilon^{d-1} = \epsilon^d$$

On the critical current $v = v_{
m c,Landau}$ of Bogoliubov theory,

$$\begin{array}{c}
E(k) \\
& & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \hline & & & \\ & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline \hline & & & \\ \hline \hline & & & \\ \hline \hline \\ \hline & & & \\ \hline \hline & & & \\ \hline \hline \\ \hline \hline \\ \hline & & & \\ \hline \hline \hline \\ \hline \end{array}$$

Reduction to Landau's criterion (2/2)

In the limit of weak barrier limit and v=0

Within the single mode approximation and using f-sum rule (Feynman),

When n>1, $v_c(Landau)=0$, which can be regarded as a result of

v(=0)=vc when
$$\beta = \frac{2+d}{n} - 2 < d$$
 (\Leftrightarrow n>1)

Discussion

➤Long-time behavior of local density autocorrelation function

➤Applicability beyond mean field theory

Luttinger liquid (1d "superfluid"; quasi-long-range order) cf. Wada group(Nagoya)

Conclusion

- A dynamical description of the criterion of instability of superfluid flow state is proposed
- It describes the instability of flow in the presence of potential barrier (due to soliton generation) and Landau instability in a unified way.
- Applicability "beyond mean-field-theory"
- Applicability to Luttinger-liquid is promising but it is to be further examined.
- Validity to instability of flow around a disk(cylinder) due to vortex generation is to be examined

At v=vc, stable and unstable solutions are degenerate.

 $\Psi(x) = A(x) \exp[\mathrm{i} \Theta(x)]$

Wavefunction of Bogoliubov excitations

$$\begin{split} S &= u \mathrm{e}^{-\mathrm{i}\Theta} + v \mathrm{e}^{\mathrm{i}\Theta}, \quad G &= u \mathrm{e}^{-\mathrm{i}\Theta} - v \mathrm{e}^{\mathrm{i}\Theta}, \\ \text{phase fluc.} \quad & \text{density fluc.} \quad \begin{cases} |\psi|^2 &= A^2 \Big[1 + \frac{2}{A} \operatorname{Re}(G \mathrm{e}^{-\mathrm{i}\epsilon t}) \Big] \\ \frac{\psi}{|\psi|} &\simeq \mathrm{e}^{-\mathrm{i}\mu t + \mathrm{i}\Theta} \exp \Big[\frac{\mathrm{i}}{A} \operatorname{Im}(S \mathrm{e}^{-\mathrm{i}\epsilon t}) \Big] \\ \end{cases} \\ \text{"Fetter's sol."} \quad & \text{"local density fluc. sol."} \end{split}$$

$$\left(\begin{array}{c}S\\G\end{array}\right) = \left(\begin{array}{c}A\\0\end{array}\right)$$

Exists for arbitrary velocity

"Anomalous Tunneling effect" = Perfect transmission in low energy limit

Gross-Pitaevskii eq. + Bogoliubov eq.

$$\{H_0(\mathbf{r}) + g|\Psi(\mathbf{r})|^2\}\Psi(\mathbf{r}) = 0 \qquad H_0(\mathbf{r}) = -\frac{\hbar^2}{2m}\nabla^2 + V_{\text{ext}}(\mathbf{r}) - \mu$$

Gross-Pitaevskii equation (stationary)

$$\begin{pmatrix} H_0(\mathbf{r}) + 2g|\Psi(\mathbf{r})|^2 & -g[\Psi(\mathbf{r})]^2 \\ g[\Psi^*(\mathbf{r})]^2 & -H_0(\mathbf{r}) - 2g|\Psi(\mathbf{r})|^2 \end{pmatrix} \begin{pmatrix} u_i(\mathbf{r}) \\ v_i(\mathbf{r}) \end{pmatrix} = \varepsilon_i \begin{pmatrix} u_i(\mathbf{r}) \\ v_i(\mathbf{r}) \end{pmatrix}$$

Bogoliubov equation for $u_i(\mathbf{r}), v_i(\mathbf{r})$

Ohashi-Tsuchiya '08 ("u,v→Ψ" scenario)

Detailed discussion on **Danshita's exact solution** in the presence of potential barrier $V_0 \delta(x)$ and supercurrent

"Fetter's solution" (Fetter1972)

When
$$\varepsilon \to 0$$
 $\begin{pmatrix} u(r) \\ v(r) \end{pmatrix} = \begin{pmatrix} \Psi(r) \\ \Psi^*(r) \end{pmatrix}$

yields a solution of Bogoliubov eq.

"u,v \rightarrow Ψ " scenario

Perfect transmission in low energy limit

Low energy excitations inherit the transport properties from superfluidity of condensate.

$$\{H_0(\mathbf{r}) + g|\Psi(\mathbf{r})|^2\}\Psi(\mathbf{r})=0$$
 $H_0(\mathbf{r}) = -\frac{\hbar^2}{2m}\nabla^2 + V_{\text{ext}}(\mathbf{r}) - \mu$

Gross-Pitaevskii equation

$$\begin{pmatrix} H_0(\mathbf{r}) + 2g|\Psi(\mathbf{r})|^2 & -g[\Psi(\mathbf{r})]^2 \\ g[\Psi^*(\mathbf{r})]^2 & -H_0(\mathbf{r}) - 2g|\Psi(\mathbf{r})|^2 \end{pmatrix} \begin{pmatrix} u_i(\mathbf{r}) \\ v_i(\mathbf{r}) \end{pmatrix} = \varepsilon_i \begin{pmatrix} u_i(\mathbf{r}) \\ v_i(\mathbf{r}) \end{pmatrix}$$

Bogoliubov equation for $u_i(\mathbf{r}), v_i(\mathbf{r})$

Tunneling problem of Bogoliubov mode **at critical current** in the presence of **generic form of potential barrier** (Takahashi-Kato JPSJ'09,No.2)

T

0.1

0.2

0.3

0.4

0.5

 ϵ

0.6

- With supercurrent q[↑], local density fluctuation increases.
- Cross over energy (•) decreases, with q¹
- Quench of local density fluc. Leads to enhancement of transmission probability

Discussion; Importance of suppression of local density fluctuation

Related activities

- Anomalous Tunneling in Spinor BEC (Watabe); P36
- Linewidth (Takahashi); P37
- Relevance to physics of Tomonaga-Luttinger liquids(Watabe)
- Tunneling between BEC with different densities (Watabe)
- Finite Temperature (Nishiwaki)

Relevance to Tunneling of Luttinger liquid (Watabe-Kato)

Finite Temperature, Popov approx.(Nishiwaki-Kato)

$$\frac{\{H_0(\mathbf{r}) + g|\Psi(\mathbf{r})|^2 + 2g\rho(\mathbf{r})\}\Psi(\mathbf{r}) = 0}{\text{Stationary GP eq.}}$$

Eq. for excitation

$$(H_0(\mathbf{r}) + 2g|\Psi(\mathbf{r})|^2 + 2g\rho(\mathbf{r}))u_i(\mathbf{r}) - g\Psi(\mathbf{r})^2v_i(\mathbf{r}) = \varepsilon_i u_i(\mathbf{r})$$
$$(H_0(\mathbf{r}) + 2g|\Psi(\mathbf{r})|^2 + 2g\rho(\mathbf{r}))v_i(\mathbf{r}) - g\Psi^*(\mathbf{r})^2u_i(\mathbf{r}) = -\varepsilon_i v_i(\mathbf{r})$$
$$\rho(\mathbf{r}) = \sum_i \left[|u_i(\mathbf{r})|^2 f^{\mathrm{B}}(\varepsilon_i) + |v_i(\mathbf{r})|^2 (f^{\mathrm{B}}(\varepsilon_i) + 1)\right] \quad f^{\mathrm{B}}; \text{Bose fn.}$$

Future work

Instability of current carrying Luttinger
 liquid in the presence of impurity

 Local density fluctuation spectrum and instability of superflow around an obstacle

Critical current of flow against the potential barrier(1dGP)

