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Concept of our study

Our  purpose

Magnetic resonance 
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The Hamiltonian for MR
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Magnetic resonance in the Bose gas

paramagnetic resonance

(anti-)ferromagnetic resonance

Spin Echo3

Rabi Oscillation 

3 M. Yasunaga and M. Tsubota Phys. Rev. Lett. 101, 0440201 (2008).

EZ/Es
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+ Josephson 
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nonlinearity



The spin-1 BECs

To compare general MR with the condensate system we transform GP eq. 
with single spatial mode approximation(SMA)4.
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4 H. Pu et al., Phys. Rev. A 60, 1463 (1999).
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Rabi Oscillation for spin-1
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quadratic Zeeman effect
hyperfine structure
87Rb

S = 1/2
I = 3/2

Hẑ

Ĥ = AI · S + CSz + DIz
A = ∆Ehfs/2
C = gµBB
D = gNµNB

Breit-Rabi Hamiltonian
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Rabi Transition
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Josephson effects

JEs were predicted by Josephson
 in 19625, investigated by P. W. 
Anderson et. al. in 19636.
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Josephson effects

JEs were predicted by Josephson
 in 19625, investigated by P. W. 
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discussion7
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5 B. D. Josephson  Phys. Lett. 1, 251-253 (1962)
6 P. W. Anderson and J. M. Rowell, Phys. Rev. Lett. 10, 230-232(1963)
7 R. P. Feynman, et al., “The Feynman Lectures on Physics.” Vol. III 
(Addison-Welsey, 1965) chap. 21



Josephson type equation8

8 W. Zhang et al., Phys. Rev. A 72, 013602 (2005).

ρ̇0 = 2c
h̄ ρ0

√
(1 − ρ0)2 − m2 sin θ

θ̇ = − 2δ
h̄ + 2c

h̄ (1 − 2ρ0) + 2c
h̄

(1−ρ0)(1−2ρ0)−m2√
(1−ρ0)2−m2

cos θ

magnetization
relative phase

relative Zeeman ene.

m = (N1 − N−1)/N
θ = θ1 + θ−1 − 2θ0

c = c2N

∫
|φ|dr

δ = E1 + E−1 − 2E0 ∝ H2

H = Hẑ
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AC JEs in a spinor BEC

δ ! c

AC Josephson effects
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Figure 2 Coherent spin mixing versus magnetic field. An initial non-equilibrium
spin-population configuration of ρ (1,0,−1) " (0,1/2,1/2) is created and allowed to
evolve in a field of 15 mG for 70 ms to allow for maximum spin mixing. At this point,
the magnetic field is ramped to different levels. Subsequently, the system shows
small-amplitude oscillations analogous to the a.c. Josephson effect,
ρ0 (t ) ∝ δ−1 sin2δ t. The typical error bars shown are the standard deviation of three
repeated measurements.

matches within 10% the prediction Ω = 2δ, whereas the δ−1 scaling
for the amplitude is seen only for higher fields, presumably because
of the invalidity of the SMA for larger amplitude oscillations. In the
future, being able to tune the system to the linear regime provides
a path to study many analogous effects previously observed in
Josephson systems, such as Shapiro levels27,36,41,46, by including a
time-varying component to the applied magnetic field.

Beyond controlling the system by the initial conditions, the
dynamical evolution of the system can be controlled in real time
by either changing spin populations and/or changing the spinor
phase φ. We demonstrate that we can coherently control the
dynamical evolution of the spinor by applying phase shifts, and, in
particular, we drive the systems to the ferromagnetic spinor ground
state using this technique. In this experiment, an initial non-
equilibrium spin configuration is created and allowed to evolve for
a fraction of an oscillation until ρ0(t) reaches the ground-state ratio
ρ0,gs = (1 − M2)/2 (refs 23,29). At this point, the system is not in
the ground state because φ $= (φgs = 0); and it is still oscillating.
At this moment, we briefly pulse on a magnetic field of 0.6 G to
apply a phase shift to the spinor, $φ =

∫
δ(t)dt. The evolution of

the system is recorded in Fig. 3a for different pulse durations. We
find that, for particular applied phase shifts, the spinor condensate
is brought to its ground state, demonstrated by the subsequent lack
of population oscillation. For other applied phase shifts, the system
is driven to different points in the phase space of the system, for
which the subsequent evolution of the system is markedly different
and shows oscillations.

It is possible to reconstruct the dynamical trajectories of
the system using the measured ρ0(t), along with the known
applied phase shifts and the equations of motion, equations (5)
and (6). Although the damping evident in the measurement is
owing to the spatial dynamics coupled to the internal spin-mixing
dynamics, a phenomenological phase-damping term may be added
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Figure 3 Coherent control of spinor dynamics. a, An initial spin configuration of
ρ (1,0,−1) " (0,1/2,1/2) is allowed to evolve in a field of 15 mG for 14 ms at which
point the populations reach the values corresponding to the ferromagnetic ground
state at this magnetization: ρ (1,0,−1) " (1/16,3/8,9/16). Then, a pulse of 600 mG
field is applied to shift the spinor phase. The dashed, solid and dotted curves
represent pulse widths of τ1 = 20,24.4 and 30 ms, respectively. For certain applied
phase shifts, the coherent spin mixing can be halted. This occurs for τ1 = 24.4 ms
corresponding to the phase shift $φ =−2.5π, and for τ1 = 5.3 ms corresponding
to $φ =−0.5π. b, Reconstructed dynamical trajectories of the system determined
by fitting the experiment data to equations (3) and (4) including a phenomenological
phase-damping term. The free parameters of the fit are the damping coefficient and
the unknown (but reproducible) initial spinor phase resulting from the state
preparation, which depends on the applied microwave pulse width and the duration
in the upper hyperfine manifold. The contours show curves of equal energy. c, To
investigate the spin coherence of the ground-state spinor created by the first pulse
with τ1 = 24.4 ms, a second pulse is applied at 300 ms to re-establish the
oscillations. The solid, dashed and dotted curves correspond to τ2 = 0,10 and
20 ms, respectively. The typical error bars shown are the standard deviation of three
repeated measurements.

to equation (6) to represent the spatial varying spin-mixing
rate that is responsible for damping the population oscillation.
The reconstructed trajectories show good qualitative agreement
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9 M. -S. Chang, et. al, Nature, Phys. 1, 111(2005).

In the limit
the experimental results9



Internal JEs

Ĥint

|1〉

|0〉
| − 1〉

SC SC SCI I

As the Feynman’s discussion, we can consider the three level system to be 
junctions of three super conductors.

| ↑↑〉 | ↓↓〉
Ĥdd

10 K. Maki and T. Tsuneto, Prog. Theor. Phys. 52, 774 (1974)
11 R. A. Webb, et al., Phys. Lett. 48A, 421(1974)

Maki-Tsuneto discussed internal JEs in 3He-A10, 
and Whetly obtained the effects experimentally11. 



Numerical GP solutions of JEs 
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 Rabi oscillation 
+ quadratic Zeeman effects

the transitions 



(1, 0, 0)initial population

Transition from Rabi to Josephson 
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Namely..
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Summary and Future

• We obtain Internal Josephson effects by 
calculating GP equation directly.

• We obtained the transition from Rabi to 
Josephson.

• We will discuss effects of MDDI in 
ferromagnetic resonance  


