Supercomputing tool for superfluid systems

TAPIO SimULA AND KAZUSHige MACHidA

岡山大学

Outline

\checkmark Solved problems

- Bragg scattering a vortex state
- Vortex waves
\checkmark Methodology
\checkmark Problems to be solved

Archimede's quantum screw

light-shift potential from Laguerre+Gaussian laser fields

$$
V_{\mathrm{ext}}(\mathbf{r}, t)=\left|A_{\mathrm{G}}\right|^{2}+\left|A_{\mathrm{LG}}\right|^{2}+2 A_{\mathrm{G}}^{*} A_{\mathrm{LG}} \cos (2 k z+\Delta \omega t+\phi)
$$

[^0]

Quantized Rotation of Atoms from Photons with Orbital Angular Momentum

M.F. Andersen, C. Ryu, Pierre Cladé, Vasant Natarajan, * A. Vaziri, ${ }^{\dagger}$ K. Helmerson, and W. D. Phillips Atomic Physics Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8424, USA (Received 26 June 2006; published 26 October 2006)
T. P. Simula, N. Nygaard, S. X. Hu, L.A. Collins, B. I. Schneider, and K. Mølmer, Phys. Rev. A 77, 0 I 540 I (2008)

Slice: time $=0 \mu \mathrm{~s}$

[^1]
Kelvin waves

$$
\omega(k) \approx \frac{\Gamma k^{2}}{4 \pi} \log \left(\frac{1}{k a}\right)
$$

Quadrupole Oscillation of a Single-Vortex Bose-Einstein Condensate: Evidence for Kelvin Modes

[^2]
(b)
(20)

$$
V_{\text {pin }}=V_{0} \frac{\sigma_{0}^{2}}{\sigma(z)^{2}} e^{-\frac{2 r^{2}}{\sigma(z)^{2}}}
$$

Tapio Simula :: Supercomputing tool for superfluid systems :: 21/04/2009 :: Hakone

Varicose waves

$V_{\text {pert }}(\mathbf{r}, t)=\epsilon m \omega_{\perp}^{2} \cos (\Omega t) \cos \left(\mathbf{k}_{z} z\right)\left(x^{2}+y^{2}\right)$

$$
\mathrm{t}=0 \mathrm{~ms}
$$

$$
\mathrm{t}=0 \mathrm{~ms}
$$

T. P. Simula, T. Mizushima, and K. Machida, PRA (2008)

Tkachenko waves

Observation of Tkachenko Oscillations in Rapidly Rotating Bose-Einstein Condensates
I. Coddington, P. Engels, V. Schweikhard, and E. A. Cornell*

JILA, National Institute of Standards and Technology and University of Colorado, and Department of Physics, University of Colorado, Boulder, Colorado 80309-0440, USA (Received 29 April 2003; published 5 September 2003)

\checkmark Mizushima, et al.

Kelvin-Tkachenko modes

work in progress

Slice
Time $=0$

Column

Tapio Simula :: Supercomputing tool for superfluid systems :: 2I/04/2009 :: Hakone

Tapio Simula :: Supercomputing tool for superfluid systems :: 2I/04/2009 :: Hakone

Methodology

\checkmark Discrete Variable Representation

- "massaged" polynomial basis
(Hermite, Legendre, Laguerre...)

$$
\left\{\phi_{n}, n=0, \ldots, N-1\right\}
$$

- quadrature rule

$$
\text { - DVR basis functions } \left.u_{\alpha}\left(x_{\beta}\right)={\frac{\delta_{\alpha \beta}}{\sqrt{w_{\alpha}}}}^{\alpha=1}\right\rangle_{\text {weights }}
$$

- diagonal potential operator

$$
\left\langle u_{\alpha}\right| \hat{x}\left|u_{\beta}\right\rangle=\sum w_{q} u_{\alpha}^{*}\left(x_{q}\right) x_{q} u_{\beta}\left(x_{q}\right)=x_{\alpha} \delta_{\alpha \beta}
$$

finite-element extension

- very sparse matrix representation

- efficient temporal propagation (TDGPE)

$$
e^{-i H \Delta t / \hbar} \approx e^{-i V \Delta t / 2 \hbar} e^{-i T \Delta t / \hbar} e^{-i V \Delta t / 2 \hbar}
$$

- scalable parallelization using MPI

Tapio Simula :: Supercomputing tool for superfluid systems :: 21/04/2009 :: Hakone

\checkmark parallelized diagonalization of large matrices

- Bogoliubov-de Gennes equations for Bose and Fermi systems

$$
\begin{aligned}
& \left(\begin{array}{cc}
\mathcal{L} & \Delta \\
\pm \Delta^{*} & -\mathcal{L}^{*}
\end{array}\right)\binom{u_{q}}{v_{q}}=E_{q}\binom{u_{q}}{v_{q}} \\
& 16 \text { Byte } \times(2 \times 97 \times 97 \times 161)^{2} \sim 133 \mathrm{~TB}
\end{aligned}
$$

- Arnoldi / Lanczos iteration in Krylov subspace

Feasible future

 directions\checkmark TDGPE + BdG in realistic 3D systems

- collective modes of rotating BEC
- inclusion of dipolar interactions
- dynamics and collective excitations of $F=0,1,2,3 \ldots$ spinor condensates, turbulence...
- BdG studies of s,p,d...-wave paired Fermi-systems
- superfluidity of graphene

[^0]: Tapio Simula :: Supercomputing tool for superfluid systems :: 2I/04/2009 :: Hakone

[^1]: Tapio Simula :: Supercomputing tool for superfluid systems :: 21/04/2009 :: Hakone

[^2]: Tapio Simula :: Supercomputing tool for superfluid systems :: 2I/04/2009 :: Hakone

