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Quantized Rotation of Atoms from Photons with Orbital Angular Momentum

M. F. Andersen, C. Ryu, Pierre Cladé, Vasant Natarajan,* A. Vaziri,† K. Helmerson, and W. D. Phillips
Atomic Physics Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8424, USA

(Received 26 June 2006; published 26 October 2006)

We demonstrate the coherent transfer of the orbital angular momentum of a photon to an atom in
quantized units of @, using a 2-photon stimulated Raman process with Laguerre-Gaussian beams to
generate an atomic vortex state in a Bose-Einstein condensate of sodium atoms. We show that the process
is coherent by creating superpositions of different vortex states, where the relative phase between the
states is determined by the relative phases of the optical fields. Furthermore, we create vortices of charge 2
by transferring to each atom the orbital angular momentum of two photons.

DOI: 10.1103/PhysRevLett.97.170406 PACS numbers: 03.75.Lm, 32.80.!t, 42.50.Vk

Light can carry two kinds of angular momentum: inter-
nal or spin angular momentum (SAM) associated with its
polarization and external or orbital angular momentum
(OAM) associated with its spatial mode [1]. A light beam
with a phase singularity, e.g., a Laguerre-Gaussian (LG)
beam, has a well-defined OAM along its propagation axis
[2]. Beams with phase singularities have only recently
been generated [3–5], and are now routinely created so
as to carry specific values of OAM [6,7].

Interaction of light with matter inevitably involves the
exchange of momentum. For linear momentum (LM), the
mechanical effects of light range from comet tails to laser
cooling of atoms. The transfer of optical SAM to atoms has
been studied for over a century [8], and the mechanical
effect of SAM on macroscopic matter was first demon-
strated 70 years ago in an experiment where circularly
polarized light rotated a birefringent plate [9]. More re-
cently, the mechanical effects of optical OAM on micro-
scopic particles and atoms have been investigated [6].
SAM and OAM of light has been used to rotate micron-
sized particles held in optical tweezers [10–12]. The forces
on atoms due to optical OAM [13] have also been inves-
tigated theoretically [6] and experimentally. In one series
of experiments [14], a diffraction grating was created in an
atomic cloud, such that diffraction of a Gaussian (G) beam
generated a light beam carrying OAM. Another experiment
[15] used a technique similar to phase imprinting [16] to
generate a light beam with OAM. In both cases, mechani-
cal OAM was likely transferred to the atomic clouds, but
not directly observed. (Such an observation would have
been difficult, since the atomic clouds were incoherent,
thermal samples.) No experiment has demonstrated the
quantized transfer of the OAM of a photon to an atom.

An atomic gas Bose-Einstein condensate (BEC) allows
the study of macroscopic quantum states. For example,
BEC superfluid properties can be explored using vortex
states (macroscopic rotational atomic states with angular
momentum per atom quantized in units of @). The many-
body wave function of the BEC is very well approximated
by the product of identical single-particle wave functions,
so for a BEC in a vortex state, each particle carries quan-

tized OAM. The first generation of a vortex in a BEC used
a ‘‘phase engineering’’ scheme involving a rapidly rotating
G laser beam coupling the external motion to internal state
Rabi oscillations [17,18]. Later schemes included me-
chanically stirring the BEC with a focused laser beam
[19] and ‘‘phase imprinting’’ by adiabatic passage
[16,20]. However, transfer of OAM from the rotating light
beams in these earlier schemes is not well-defined.

Here, we report the direct observation of the quantized
transfer of well-defined OAM of photons to atoms. Using a
2-photon stimulated Raman process, similar to Bragg dif-
fraction [21], but with a LG beam carrying OAM of @ per
photon, we generate an atomic vortex state in a BEC. Over
the past decade, numerous papers [22,23] proposed gen-
erating vortices in a BEC using stimulated Raman pro-
cesses with configurations of optical fields that provide
OAM, such as LG beams. Our experiment is the first
realization of this technique, but differs from the proposals
in that we do not change the internal atomic states; instead
we change the LM state transferring OAM in the process.
Furthermore, we demonstrate that the process is coherent
by creating superpositions of different vortex states where
the relative phase between the states is determined by the
relative phases of the optical fields. Our process represents
both a new and well-controlled way of creating a vortex
state in a BEC and a new tool for the coherent control of the
OAM of atomic samples, complementing existing tools for
LM and SAM.

The set of Laguerre-Gaussian modes (LGl
p) defines a

possible basis set to describe paraxial laser beams [24,25].
The indice l is the winding number or charge (the number
of times the phase completes 2! on a closed loop around
the propagation axis) and p is the number of radial nodes
for radius "> 0. Each photon in the LGl

p mode carries l@
of OAM along its direction of propagation [2]. In contrast,
SAM can only carry @ of angular momentum per photon.
We use a LG1

0 mode, where the electric field amplitude in
polar coordinates at the beam waist varies, as,
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V (t) = 1
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T. P. Simula,T. Mizushima, and K. Machida, PRL (2008) 
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the inward motion to be diverted in the lattice rotation
direction and the outward flow to be diverted in the
opposite direction. This sheared fluid flow drags the vor-
tices from their equilibrium configuration and sets the
initial conditions for the lattice oscillation as can be seen
from the expanded images in Fig. 1.

The second method of exciting the Tkachenko oscil-
lation is essentially the inverse of the previous method.
Instead of removing atoms from the cloud we use a red-
detuned optical dipole potential to draw atoms into the
middle of the condensate. To do this we focus a 850 nm
laser beam onto the condensate. The beam has 3 !W of
power and a 40 !m FWHM. It propagates along the
direction of condensate rotation and its effect is to create
a 0.4 nK deep Gaussian dip in the radial trapping poten-
tial. This beam is left on for 125 ms to create an inward
fluid flow similar to before. The resulting Tkachenko
oscillation was studied for ! ! 0:95 and found to be
completely consistent with the atom removal method. It
is not surprising that these two methods are equivalent
since one works by creating a dip in the interaction
potential and the other creates a similar dip in the trap-
ping potential.

For these experiments, data are extracted by destruc-
tively imaging the vortex lattice in expansion and fitting
the lattice oscillation. To perform this fit we find a curvi-
linear row of vortices going through the center of the
cloud and fit a sine wave to the locations of the vortex
centers, recording the sine amplitude. This is done for all
three directions of lattice symmetry (see Fig. 1), with the
amplitudes averaged to yield the net fit amplitude of the
distortion.

The resulting oscillation (see Fig. 2) is heavily damped
and has a Q value of 3–5 for the data presented. Here
Q is given by Q ! 2"f#damping, where #damping is the
exponential-damping time constant for the oscillation.
We are able to increase this to a Q of 10 by exciting lower
amplitude oscillations (40% of the previous amplitude)
and by better mode matching of the blasting beam to the
shape and period of the oscillation (40 !m FWHM beam
width and 500 ms blasting time). Measured frequencies

for the high-amplitude oscillations are the same as for the
low-amplitude, high-Q case so we do not believe that we
are seeing anharmonic shifts [15].

Because of the characteristic s-bend shape and the low
resonant frequency of these oscillations [see Fig. 3(a)] we
interpret them to be the (n ! 1, m ! 0) Tkachenko oscil-
lations predicted by Anglin [10]. Here (n;m) refer to the
radial and angular nodes, respectively, in the presumed
quasi-2D geometry. The calculations of Ref. [10] predict
that these lattice oscillations should have a frequency of
$10 ! 1:43%!"!&=2"# for the (1,0) mode and $20 !
2:32%!"!&=2"# for the (2,0) mode. Here % ! b=R& de-
notes the nearest-neighbor vortex spacing, b, over the
radial Thomas-Fermi radius, R&. For our system these
predicted frequencies are around 1–2 Hz and are there-
fore far slower than any of the density-changing coherent
oscillations of the condensate except for the m ! $2
surface wave [9,16–18]. In addition the shape of the
observed oscillation agrees well with theory. Specifi-
cally, the prediction [10] that the spatial period of a sine
wave fit to a row of vortices in a (1,0) oscillation should be
1.33 R& is in perfect agreement with our data.

The predicted frequencies are however problematic. To
make the comparison to the theory presented in Ref. [10]
we excite lattice oscillations in the condensate for %!
ranging from 0.10 to 0.15. This is achieved by varying
number and rotation rate. Over this range of %! the
oscillation frequencies measured are consistently lower
than those predicted by theory as can be seen in Fig. 3(b).
For the slowest rotations, ! ! 0:84 (%! ! 0:15, N !
2:5% 106), we observe frequencies that are as close as

FIG. 1. (1,0) Tkachenko mode excited by atom removal (a)
taken 500 ms after the end of the blasting pulse, (b) taken
1650 ms after the end of the blasting pulse. BEC rotation is
counterclockwise. Lines are sine fits to the vortex lattice.
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FIG. 2. Measured oscillation amplitude for a typical excita-
tion ! ! 0:92 and 2:2% 106 atoms. Fit is to a sine wave times
an exponential decay and yields a frequency of 0.85 Hz and a Q
of 3. The oscillation amplitude is expressed as the average
amplitude of the sine wave fits to the vortex oscillation in units
of the radial Thomas-Fermi radius (roughly the azimuthal
displacement of a vortex a distance 0.33 R& from the conden-
sate center). Both values are in expansion.
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Observation of Tkachenko Oscillations in Rapidly Rotating Bose-Einstein Condensates

I. Coddington, P. Engels, V. Schweikhard, and E. A. Cornell*
JILA, National Institute of Standards and Technology and University of Colorado, and Department of Physics,

University of Colorado, Boulder, Colorado 80309-0440, USA
(Received 29 April 2003; published 5 September 2003)

We directly image Tkachenko waves in a vortex lattice in a dilute-gas Bose-Einstein condensate. The
low (sub-Hz) resonant frequencies are a consequence of the small but nonvanishing elastic shear
modulus of the vortex-filled superfluid. The frequencies are measured for rotation rates as high as 98%
of the centrifugal limit for the harmonically confined gas. Agreement with a hydrodynamic theory
worsens with increasing rotation rate, perhaps due to the increasing fraction of the volume displaced by
the vortex cores. We also observe two low-lying m ! 0 longitudinal modes at about 20 times higher
frequency.

DOI: 10.1103/PhysRevLett.91.100402 PACS numbers: 03.75.Lm, 32.80.Pj, 67.90.+z, 67.40.Vs

We have all seen a cylindrically confined fluid support
azimuthal flow whether we are watching water flow down
a drain or a recently stirred cup of coffee. What is some-
what harder to imagine is a fluid sustaining oscillatory
azimuthal flow. Instinctively one does not expect a fluid to
support shear forces, and this would seem especially true
in the case of zero-viscosity superfluids, but such intuition
is incomplete.

The key issue is vortices. In 1955, Feynman [1]
predicted that a superfluid can rotate when pierced by
an array of quantized singularities or vortices. In 1957,
Abrikosov [2] demonstrated that such vortices in a type II
superconductor will organize into a triangular crystalline
lattice due to their mutual repulsion. Not surprisingly, the
Abrikosov lattice has an associated rigidity. In 1966,
Tkachenko proposed that a vortex lattice in a superfluid
would support transverse elastic modes [3]. First observed
by Andereck et al. [4], Tkachenko oscillations have been
the object of considerable experimental and theoretical
effort in superfluid helium, much of which was summar-
ized by Sonin in 1987 [5].

In the last two years it has become possible to achieve a
vortex lattice state in dilute-gas Bose-Einstein conden-
sates (BEC) [6–9] and recent theoretical work [10] has
suggested that Tkachenko oscillations are also attainable.
In this Letter we report the observation of Tkachenko
oscillations in BEC. The particular strengths of BEC are
that in the clean environment of a magnetically trapped
gas there is no vortex pinning, and spatiotemporal evolu-
tion of the oscillation may be directly observed. Since the
original submission of this paper Baym and Baksmaty
et al. have independently published theoretical works
[11,12] that precisely describe our data.

We begin the experiment with a rotating condensate
held in an axially symmetric trap with trap frequencies
f!!; !zg ! 2"f8:3; 5:2g Hz. The condensed cloud con-
tains 1:5–2:9" 106 87Rb atoms in the jF ! 1; mF !
#1i state. The cloud rotates about the vertical, z axis.
Rotation rates for the experiments described in this paper

range from ! ! 0:84 to ! ! 0:975 (! defined as con-
densate rotation rate over !!). We have no observable
normal cloud implying a T=Tc < 0:6. The means by
which we prepare this condensate is identical to our
previous work [9,13]. As before, rotation can be accu-
rately measured by comparing the condensate aspect
ratio to the trap aspect ratio. Vortices, which are too small
to observe in trap, can be seen by turning off the trap and
allowing the cloud to expand to 5 times its original size,
or typically 380 #m FWHM, and imaging along the
direction of rotation [14]. At our high rotation rates the
condensate is oblate and the vortex cores are essentially
vertical lines except right at the surface.

We excite lattice oscillations by two mechanisms. The
first mechanism presented is based on the selective re-
moval of atoms that has also been discussed in previous
work [14]. With this method we remove atoms at the
center of the condensate with a resonant, focused laser
beam sent through the condensate along the axis of
rotation. The width of the ‘‘blasting’’ laser beam is
16 #m FWHM (small compared to an in-trap condensate
FWHM of 75 #m), with a Gaussian intensity profile. The
frequency of the laser is tuned to the F00 ! 1 ! F0 ! 0
transition of the D2 line, and the recoil from a sponta-
neously scattered photon blasts atoms out of the conden-
sate. The laser power is about 10 fW and is left on for
approximately one lattice rotation period (125 ms).

The effect of this blasting laser is to remove a small
(barely observable) fraction of atoms from the center of
the condensate. This has two consequences. First, the
average angular momentum per particle is increased by
the selective removal of low angular momentum atoms
from the condensate center. This increase then requires a
corresponding increase in the equilibrium condensate
radius [14]. Second, the atom removal creates a density
dip in the center of the cloud. Thus, after the blasting
pulse, the condensate has fluid flowing inward to fill the
density dip and fluid flowing outward to expand the
radius. The Coriolis force acting on these flows causes
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size for the inertial mode [28]. The forms of the mode
frequencies do not depend on the system being weakly
interacting. In the stiff limit, the Tkachenko frequency,
!T ! "!=4m#1=2k, is linear in k. By contrast, in the soft
limit, the mode frequency !T is quadratic in k at long
wavelengths,

!T !
!

C2

2nm

"

1=2sk2

!
; (17)

in the quantum Hall limit, !T ’ "9=4!2
######

10
p

#$
"s2k2=!# [12].

The softness of the Tkachenko modes in the rapidly
rotating regime leads to infrared singular behavior in
the vortex transverse displacement-displacement correla-
tions at finite temperature, and in the order parame-
ter phase correlations even at zero temperature [12,13].
In a finite system the single particle density matrix,
h "r# y"r0#i, falls algebraically as j ~rr% ~rr 0j%", where
" ’ "ms2n=8C2#1=2Nv=N, Nv is the total number of vor-
tices present, and N is the total particle number [13].
Dephasing of the condensate becomes significant only
as Nv ! N, and not necessarily before the vortex lat-
tice melts.

To compare Eq. (16) with the experiment of Ref. [16],
we extract the effective value of k in the lowest
Tkachenko mode from the numerical result of Ref. [17]
for the fundamental frequency: !T ’ 1:43a!=R !
2:72"!=m#1=2=R, where a ! "2!#1=2=31=4"m!#1=2 is the
lattice constant, and R the transverse Thomas-Fermi ra-
dius. Comparison with the slow rotation Tkachenko fre-
quency, "!=4m#1=2k, implies an effective wave vector of
the lowest mode, k0 ! #=R, where # ’ 5:45. Tacitly as-
suming the mode function of [17], we use this value of k
in the following. Corrections at high ! to the mode
function remain to be determined. The transverse

Thomas-Fermi radius of a rotating condensate is given
by [25] R2 ! d2$"1% x#%3=5, where x ! !2=!2

%, d !
1="m!%#1=2 is the transverse oscillator length, $ !
&"15Nbas=d#"!z=!%#'2=5, and !z is the axial trapping
frequency. The sound velocity in the center of the trap is
ms"0#2 ! gbn"0# ! "!%=2#$"1% x#2=5, so that

!

ms"0#2 ! 2

$
x1=2

"1% x#2=5
: (18)

Also, &!=s"0#k0'2 ! 2x="1% x##2; in the present experi-
ments, !=s"0#k0 reaches (1:15. Ignoring b ’ 1 here [25],
as well as the small C1 ) C2 term in (16), we have

!2
T ! !2

%

!

C2

!n=8

"

#2

4$
x1=2"1% x#8=5

1% xf1% "8=#2#&s"0#2="ss2'g ; (19)

where "ss2 is the sound velocity squared appropriately
averaged over the mode function. In the mean-field quan-
tum Hall regime, !T=!% ( "1% x#.

The inset of Fig. 2 shows the Tkachenko mode frequen-
cies as a function of !=!%, illustrating the initial square
root rise and the eventual falloff for ! & !%. The curves
are evaluated for the parameters of Ref. [16], "!%; !z# !
2!"8:3; 5:2# Hz, at the representative condensate number,
N ! 2:5$ 106. Figure 2 proper shows these curves in the
region measured in [16]. The upper curve is calculated
from Eq. (19) with "ss2 ! s"0#2. The experiments of [16]
(triangles) are at N ( "0:7–3# $ 106. According to (19),
the frequencies scale as N%1=5; thus to facilitate compari-
son with theory, shown for N ! 2:5$ 106, we have
scaled the individual data points down by a factor
"N=2:5$ 106#1=5, equivalent to scaling the theory up by
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FIG. 1. Inertial and Tkachenko mode frequencies vs wave
vector, in units of 2!=s. The inertial mode frequency (upper
curve) is in units of 2!, while the Tkachenko frequency (lower
curve) is in units of "!3=ms2#1=2. The frequencies shown are
for ! * ms2; in the quantum Hall regime, the Tkachenko
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FIG. 2. Frequency of the lowest Tkachenko mode. The upper
curve is evaluated at constant shear modulus, C2, and the
central sound velocity. The lower solid curve includes a de-
creasing C2, Eq. (6) with & ! 4; in the dashed curve
"ss2=s"0#2 ! 4=7 with & ! 0. Note that the solid curve falls
below the dashed curve at high !. The data (triangles) from
Ref. [16] are multiplied by a factor "N=2:5$ 106#%1=5 to
compare with theory, calculated for N ! 2:5$ 106. The inset
shows !T over the entire range of !; the upper (short dashed)
curve is the mode frequency to lowest order in the wave vector
[18]; the lower curves include the full k dependence at constant
C2, and "ss2=s"0#2 ! 1 (dashed curve) and 4=7 (solid curve).
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This result coincides with the above calculations based on
the BdG equations. In fact, the nodal positions obtained
from both calculations agree quite well.

In Fig. 3(b), the Fourier analyses of these transverse
oscillations, !j!t", and the longitudinal motions, rj!t" #
1
6

P

5
n#0 jrj;n!t"j, are depicted. It is seen that the sharp

peak at ! # 0:16!r precisely coincides with the first
TK mode !1;0 identified above; see Fig. 1(c). The second
peak at ! # 2:0!r corresponds to the 1BR mode, be-
longing to the common longitudinal modes. The third
peak at !$ 3:1!r may be identified as the 2BR mode,
see Figs. 1(b) and 2(d), and as a differential longitudinal
mode. These three collective modes closely match the
observed characteristics. In particular, the third mode
which was tentatively assigned by Cozzini et al. and
Choi et al. [16], independently, as a higher-order hydro-
dynamic mode, is now identified above. It should be noted
that the resonances of these three modes for a Gaussian
potential have been numerically reproduced over a wide
range of rotation rates ! # 0:7–0:92, corresponding to
37–121 vortices.

In Fig. 4, we plot the first TK energy !1;0 as a function
of !=!r together with the experimental data [13] and a
hydrodynamic prediction by Anglin and Crescimanno
[14]. There prevails close quantitative overall agreement
between our results and the experimental data. We em-
phasize that our calculations contain no adjustable pa-
rameters and also that our computations within the BdG
and TDGP approaches agree within numerical accuracy
$10%3!r below ! & 0:8!r. Calculations for larger rota-
tion rates, where BdG cannot be feasible from a numerical
point of view, are done with TDGP, which enables us to
extrapolate the BdG results to larger rotation rates. The
inset in Fig. 4 describes the ! dependence of the 1BR and
2BR modes. It is known that the former is consistent with
an earlier prediction by Pitaevskii and Rosch [20], who
point out that the 2D BR mode features the universal

eigenfrequency ! # 2:0!r. Our result reproduces this
result and further explains the observation mentioned
above that the second peak in Fig. 3(b) is indeed the
1BR mode. As for the third peak in Fig. 3(b), previously
identified as the 2BR mode, it is reckoned from this inset
that the observed value 18:5' 0:3 Hz (’2:2!r) appears
accountable, judging from the overall ! dependence
towards !c.

In summary, we have discussed the complete low-
energy excitation spectrum in a vortex- lattice by solving
the BdG equations. The m # 0 subset of these solutions
includes the transverse shear, common longitudinal, and
differential longitudinal modes. We have also succeeded
in simulating the actual experimental results, identifying
a new pair of modes.

The authors thank V. Schweikhard, I. Coddington, and
M. Ichioka for useful conversations and communications.
K. M. is grateful to G. Baym, J. R. Anglin, S. Stringari,
and A. L. Fetter for enthusiastic discussions on the
Tkachenko mode at the Aspen Center for Physics.

Note added.—During the preparation of this manu-
script, we learned about two closely related preprints
[21,22]. The former (latter) presents BdG (TDGP) treat-
ments of the TK mode.
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Kelvin-Tkachenko modes

work in progress
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Methodology
✓Discrete Variable Representation

• “massaged” polynomial basis      
(Hermite, Legendre, Laguerre...)

• quadrature rule 

• DVR basis functions

• diagonal potential operator

{φn, n = 0, . . . , N − 1}

〈f |g〉 ≡
∫ b

a
dx w(x)f(x)g(x) ≈

N∑

α=1

wαf(xα)g(xα)

roots

weightsuα(xβ) =
δαβ√
wα

〈uα|x̂|uβ〉 =
∑

q

wqu
∗
α(xq)xquβ(xq) = xαδαβ
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✓  finite-element extension
• very sparse matrix representation

• efficient temporal propagation (TDGPE)

• scalable parallelization using MPI 

= +

odd evenkinetic

e
−iH∆t/!

≈ e
−iV ∆t/2!

e
−iT∆t/!

e
−iV ∆t/2!

0 1
2 3
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16 Byte× (2× 97× 97× 161)2 ∼ 133 TB

✓ parallelized diagonalization of large matrices 

• Bogoliubov-de Gennes equations for Bose and Fermi systems

• Arnoldi / Lanczos iteration in Krylov subspace
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Feasible future 
directions

✓ TDGPE + BdG in realistic 3D systems

• collective modes of rotating BEC 

• inclusion of dipolar interactions

• dynamics and collective excitations of                               
F = 0,1,2,3... spinor condensates, turbulence...

• BdG studies of s,p,d...-wave paired Fermi-systems 

• superfluidity of graphene

in progress
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