

Collision dynamics of ⁸⁷Rb spin-2 Bose-Einstein condensates

Satoshi Tojo, Tatsuyoshi Tanabe, Taro Hayashi, Emiko Inoue, Yoshihisa Taguchi, and Takuya Hirano

> Department of physics, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588

2009. 4.21 @ Hakone

Outline

- Spin-2 Bose-Einstein condensate (BEC)
 Motivation: Properties of spin-2 BEC
- 2. Magnetic phase of spin-2 spinor BEC
 - Spin-population measurement
 - Inelastic collisions of spin-2 BEC
 - Future plan
- 3. Binary BECs in mixed hyperfine states
 - Two-component BECs in clock states
 - \bigcirc
- 4. Summary

F AF C or or C

1. Spin-2 Bose-Einstein condensate

Motivation

Spin-2 Bose-Einstein condensate (BEC)

 \rightarrow Novel physics in quantum fluids with spin degree of freedom

• Superfluidity:

• Quantum vortex: multiply charged

$$n = 2 \times |m_F| = 4$$

 m_F : magnetic sublevel

• Multi-component BEC:

Motivation

Spin-2 Bose-Einstein condensate (BEC)

Novel physics in quantum fluids with spin degree of freedom

Magnetic phases:
 New quantum phase!
 Ueda & Koashi, PRA 65, 063602 (2002)
 Saito & Ueda, PRA 72, 053628 (2005)

• Superfluidity:

- Quantum vortex: multiply charged
- Multi-component BEC: <u>miscible or immiscible?</u>

Difficulty in spin-2 BEC

• Unstable BEC for spin-2 systems

Ground state of BEC atoms

⁷Li, ²³Na, ³⁹K, ⁸⁷Rb : F = 1 upper hyperfine levels for F = 2⁸⁵Rb: F = 2, ¹³³Cs: F = 3 upper hyperfine levels for F = 2¹H: F = 0, ⁴He^{*}, ¹⁷⁴Yb: J = 0, ⁵³Cr: J = 3

BEC

2. Magnetic phases of spin-2 spinor BEC

2-1. Spin-population measurement

Magnetic phases in spin-2 system

Ueda & Koashi, PRA **65**, 063602 (2002) Saito & Ueda, PRA **72**, 053628 (2005)

Measured coefficients of spin-dependent interaction

$$c_1/(4\pi\hbar^2/m) \ c_2/(4\pi\hbar^2/m)$$

$$(+0.99\pm0.06)a_B$$

 $(-0.53\pm0.58)a_B$

Widera et al., New Journal of Physics 8, 152 (2006)

• Magnetic phases of ⁸⁷Rb F = 2:

Magnetic phases in ⁸⁷Rb F = 2 BEC

Determination of magnetic phase using <u>spin-population measurement</u>

Optical trap (Far-Off Resonant Trap)

Experimental procedure

Experimental setup

BEC setup

Main chamber

Evolution of $m_{\rm F}$ = -2 & $m_{\rm F}$ = +2 BEC mixture

2. Magnetic phases of spin-2 spinor BEC

2-2. Inelastic collisions in spin-2 BEC

Inelastic collision of spin-2 system

Inelastic collision of spin-2 atoms

Total spin of collision channel; $\mathcal{F} = 0, 2, 4$

Time-evolution of identical spin state ($m_F = 0, m_F = -1$)

Kawaguchi, Saito, and Ueda (private communication)

Atom number evolution in $|2,0\rangle + |2,-2\rangle$ and $|2,0\rangle + |2,-1\rangle$

Relative displacement between different spin states

Spin population measurement

3. Binary BECs in mixed hyperfine states

3-1. Two component BECs in clock states

Binary BECs in mixed hyperfine states

Phase separation of 2-component BECs

⁸⁷ Rb 1,+1> & 2,-1>	D. S. Hall <i>et al</i> ., Phys. Rev. Lett. 81 , 1539 (1998) K. M. Mertes <i>et al</i> ., Phys. Rev. Lett. 99 , 190402 (2007)
²³ Na 1,+1> & 1,0>	HJ. Miesner <i>et al</i> ., Phys. Rev. Lett. 82 , 2228 (1999) K. Kasamatsu and M. Tsubota., Phys. Rev. Lett. 93 , 100402 (2004)
	2,-2> & 1,-1> : oppositely sensitive to magnetic field
2,0> + 1,0>	2,+1> & 1,-1> : same sensitive to magnetic field
	2,0> & 1,0> : insensitive to magnetic field!!
???	We observed time-evolution of 1,0>+ 2,0> in optical trap to prevent from effects of magnetic field.

Observation of phase-separation: equal population

 $a_{12} > 97.66a_B$?

Summary

Magnetic phase of ⁸⁷Rb spin-2 BEC

• For $m_{\rm F} = \pm 2$ initial state, atoms remain in $m_{\rm F} = \pm 2$

"Anti-ferromagnetic behavior"

 Inelastic collision rates of all possible channels are well described by two parameters: <u>basis knowledge for future study</u>.

$$b_0 = , b_2 = , b_4 =$$

Results supported "anti-ferromagnetic" phase...

However, effects of <u>relative displacement</u> or <u>phase-separation</u>??

🔶 Future plan

Binary BECs in mixed hyperfine states
 Multiple domains are observed in clock states.

Thank you !!