Observation of Superfluid Transition in a Submicron ³He Film

Low Temp. Phys. Lab., RIKEN M. Saitoh, H. Ikegami, K. Kono

Superclean Workshop A03-04 (Hakone) 2009.4.19

Superfluid ³He Film

phase transition induced by thickness
stabilization of inhomogeneous superfluid state

Experimental Method

Inter-digitated Capacitors (IDC)

Previous Results

Previous Results

Thickness dependence of J_c

Two distinct behavior was observed at the thickness of $\sim 1 \, \mu m$.

- thin region: similar thickness dependence
- thick region: different thickness dependence
 - →different dissipation mechanism?
 - \rightarrow Effect of the phase transition?

Control of Superfluid Phase by The Magnetic Field

Experimental Setup

Observation of Superfluid Transition of the Film and the Bulk

Observation of the Transition by changing T

9

Observation of the Transition by changing d

Thickness Dependence of T_c

Measurement in the Magnetic Field

Thickness Dependence of T_c in the Magnetic Field

similar reduced $T_{\rm c}^{\rm f}$ was observed in A phase

Drive Current Dependence of T_c^f

The effect of the current on $T_{\rm c}^{\rm f}$ was not observed

$T_{\rm c}^{\rm f}$ and Temperature dependence of $J_{\rm c}$

- Superfluid transition of the ³He film was measured for thickness of $0.1 \sim 9 \ \mu m$, in zero field and 3 kG.
- The observed T^f_c was several percent lower than theoretical predictions.
- The reduction of T_c^f due to the current did not observed.
- In zero and 3kG field, different temperature dependences of J_c were observed.