20/Apr./2009 SuperClean Hakone

超流動自由表面直下の二次元イオン系 を用いた超流動臨界速度の観測

RIKEN D. Takahashi, H. Ikegami, K. Kono

motivation : Quantum Turbulence & Kelvin wave

• Kelvin wave

Kelvin wave on the quantum vortex is very important role to understand the energy dissipation mechanism of the quantum turbulence at T=0 K.

The wave length and eigenfrequency

wave number :
$$k_{K} = \frac{2\pi n}{l_{w}}$$
 $(n = 1, 2, 3...)$
eigenfrequency : $\varpi_{k} \sim \frac{\kappa \cdot k_{k}^{2}}{4\pi} \ln\left(\frac{1}{k_{k}a}\right)$

 I_w : vortex length, a: core radius

Can we observe the transition between laminar flow and the turbulence by well controlled Kelvin wave?

Motivation for this experiment

- The dissipation of Quantum Turbulence around T=0, no viscosity at all, is quite interesting problem.
- If it is possible for the ion to trap at the termination point of the vortex line, there is a possibility that we could drive the vortex line and excite the controlled Kelvin wave.

Today's talk

Topic : Transport property of lons at Rest

- 1. Recently, we found a unique transition between ohmic and nonohmic current with increasing ac drive in 2D snowball system.
- 2. This transition remind us that new scattering mechanism arise except thermal roton, phonon, and ripplon.

We report recent experimental works about the critical velocity

introduction : lons in Helium

• Snowball

Snowball : positive ion

small cluster of solidified ⁴He around a ⁴He₂⁺ ion

radius $R_{+}: 6^{7} \stackrel{\circ}{A}$ mass $M_{+}: ^{30} m_{He}$ (T=0)

 m_{He} : bare helium mass

• 2D layer below surface

Net vertical potential for ions

$$U(z) = eE_{\perp}z + \frac{e^2}{16\pi\varepsilon_0}\frac{\alpha - 1}{\alpha(\alpha + 1)}\frac{1}{z}$$

ion density $n_s = \varepsilon_0 V_0 / e(D - d_l) : 10^{11} \sim 10^{12} / \text{m}^2$

Experiment

• ³He impurity in liquid ⁴He

- Ion mobility is limited by ³He impurity
- Vortex core is easy to capture ³He impurity

Commercial ⁴He : x_{3He} ~ > 100ppb

Transport measurement of snowball

• Conductivity Limited below ~ 400 mK

Plasma Resonance
 <pure 4He>
 Q-value ~ 5.2 larger

A few handled ppb x_{3He}: Serious effects on the transport properties

Experiment

- Experimental parameters
 - Sommer Tanner method
 - Measurement parameter
 Input AC field sin wave -5mV_{pp} < V_{ac} < 5 V_{pp}
 30,020Hz < Freq
 - Ion density
 Snowball used in this run
 Density : 6.6x10¹¹/m²
 - Pressing Field & Distance
 E_⊥ = 6.70 kV/m (z = 37.6nm)
 E_⊥ = 9.77 kV/m (z = 28.6nm)
 E_⊥ = 11.6 kV/m (z = 21.1nm)

$$i_{g} = \frac{1}{G} \frac{C_{out}(C_{V} + C_{l})}{C_{V}} \cdot \varpi V_{drive} \cdot \left| V_{output} \right|$$
$$= 2\pi r_{i} \cdot n_{i} e \cdot v_{g}$$

Result - Mobility Measurement

• Temperature dependence of Mobility Ion is driven by less than 5mVpp ac voltage

T> 550 mK Scattered by thermal excited quasi particle

T < ~ 550 mK Mobility is limited by phonon limited μ

T < ~ 200 mK Mobility is limited by ripplon limited μ $\mu \propto 1/T$

<u>Result – Critical Velocity(vc)</u>

• Drive voltage dependence of the snowball velocity

Conditions : **37.6 nm** Freq. 50,020 Hz

1. below ~ 0.5 V v_{ion} follows Ohm's law.

2. Above ~ 0.5 V v_{ion} deviates from Ohm's law and shows the jump abruptly at threshold voltage.

3. T ~ 450 mK

v_{ion} strongly suppress before the jump.

Critical velocity shows the temperature dependence !

Result - Critical Velocity(vc)

• Temperature dependence of v_c

<parameters> n_i = 6.6 x 10⁻¹¹/m² Freq. : 50,020 Hz

T > \sim 420 mK : v_{c (high)} \sim 31 m/s T< \sim 200 mK : v_{c (low)} \sim 18 m/s

v_c decreases with decreasing temperature between these temperature.

ion mobility is strongly limited by ripplon scattering below 200 mK.

Vc is almost independent of the depth from the surface

Discussion

• The creation of vortex rings could be the origin of the nonlinear behavior.

Presumable vortex nucleation mechanism for bubble

Model : C. M. Muirhead et al. Phil. Trans. R. Soc. Lond. A 331, 433(1984)

Macroscopic Quantum Tunneling

T=0 (K), P=0 (atm) $U_c \sim 45$ (m/s) $\Delta E \sim 0.5 \times 10^{-23}$ (J) ~ 3.6 (K)

e Uc ~ 45m/s

Experiment : G.G. Nacolas et al. Phil. Trans. R. Soc. Lond. A313, 537(1985)

$$v(T) = v_0 \exp(-BT^3) + AT \exp(-\Delta/k_B T)$$
$$\Delta/k_B \sim 3(K)$$

Discussion

• Damping of nucleation rate : Caldeira-Leggett

- 1. A small dip of v(T) observed using electron bubble was thought that phonon damping reduces the tunneling rate.
- 2. In our case, v_c increased above ~200 mK. Temperature dependence of mobility shows that phonon scattering dominates the mobility above ~200 mK.

Here, we introduce a phenomenological potential as follow

$$E_a = E_0 - aV_{ion}$$

Criterion for observation of tunneling

$$v_{nucl} \sim O(1)$$

~ $\exp(-\sqrt{E_0 - aV_c}) * \exp(-\eta)$

Discussion

• Critical velocity

When we assume the energy barrier for tunneling as E_0 -a V_{ion} . The critical velocity can be expressed as follows

 $V_c = V_0 + const.*\eta$

 η : Dissipation coefficient

The damping process is caused by phonon scattering, then η is expected in proportion to T³.

The increase of v_c could be explained by the tunneling rate is reduced by some dissipation mechanism in this system.

Summary & Speculation

- We observed the critical velocity of the 2D ion systems underneath superfluid ⁴He.
- The observed non-linear transport indicates that a new dissipation mechanism arises at critical velocity (v_c).
- v_c is sufficiently small (~60%) compared to Landau critical velocity for roton emission at saturated vapor pressure.
- The nucleation of quantized vortex ring (q.v.r) could be the origin of the nonlinear behavior.
- Below ~ 200 mK, temperature independent of vc means the macroscopic quantum tunneling rate of the nucleation of q.v.r. should be constant.
- On the other hand, below ~350 mK, the damping effect for the MQT by phonon may be important role to explain the increase of vc with increasing temperature
- Above ~350 mK, thermal activation process assists the q.v.r nucleation

Future Work

• We measure the critical velocity under rotation.