2009. 4. 20 supercleanA03/A04meeting@Hakone

Anomalous Transport Characteristics in Sr₂RuO₄-Ru eutectic junction

Tokyo Univ of Sci. Hokkaido Univ. Nagoya Univ. Kyoło Univ.

<u>Hiroshi Kambara</u> Satoshi Kashiwaya Hiroshi Yaguchi Yasuhiro Asano Yukio Tanaka Yoshiteru Maeno

Introduction ~3-K phase superconductivity~

Extract a channel of Sr₂RuO₄-Ru junction

Focusing on the <u>local superconducting channel</u> by controlling the number of Ru-inclusions

Kink structures appear after FIB milling because only a few channels are left.

dV/dI-l characteristics

Anomalous V-I characteristics (I / / ab)

<u>Anomalous features</u>

- (1) Voltage decreases at I_{th}.
- (2) It switches to a lower R_n (normal resistance) branch with larger I_c .
- (3) Opposite hysteresis loop compared to typical Josephson junction (JJ) s.

<u>Transport along c-axis</u>

How is the c-axis local transport? Is anomalous hysteresis observed? > Yes! (clearer)

sample: c199-9-5

Disappearance of hysteresis (I//c)

Possible origin of the hysteresis

Experimental results

- Anomalous hysteresis appears in both directions.
- Hysteresis disappears during many dc bias current sweeps.
- The lower I_c state is stabilized after the hysteresis disappears.
- Hysteresis is stable against magnetic field.

All features are common in I//ab, I//c.

Possible origin of the hysteresis

(a) Chiral domain

<problems>

- Reproducibility of the hysteresis (appearance and shape) is quite high.
 - → Antiparallel domain always forms in the same position? (pinning at lattice defects?)
- Hysteresis survives after magnetic field cooling. \rightarrow is it hand to interact with external field 2
 - \rightarrow Is it hard to interact with external field?

Possible origin of the hysteresis

(b) **3**-K phase+**1.5**-K phase

3-K phase symmetry (p_x) is stabilized along the edge due to broken translational symmetry?

Hysteresis may appear due to interference between (p_x) and $(p_x \pm ip_y)$.

<problems>

- Hysteresis exists along I / / c.
 - \rightarrow Spatial variation in the order parameter along c-axis should be small.
- Switch occurs from the lower I $_{\rm c}$ path to the larger I $_{\rm c}$ path (anomalous hysteresis).
 - \rightarrow Why is the larger I_c path NOT chosen at first?

	Hysteresis		Sudden dis-	Final lower-	No-magnetic	totol
Model	I // ab	I // c	appearance	I _c state	field effect	total
Chiral domain	0	0	\triangle	\triangle	?	?
3-K + 1.5-K	0	?	Δ	Δ	Δ	?
Vortex	\bigcirc	\cap	?	A	×	×
			_			

O...OK! \triangle ...probably OK ?...question **X**...contrary

<u>Summary</u>

- Local transport measurements have been done (I//ab, I//c) for Sr₂RuO₄-Ru eutectic samples made by FIB process.
- (1) p-wave Josephson junctions are formed (3-K / 1.5-K / 3-K).
- (2) Anomalous hysteresis was observed for both current directions. (voltage drop, opposite hysteresis loop) Hysteresis disappears during many dc bias current sweeps, and then the lower l_c state is stabilized.
 - Origin of the hysteresis (internal degrees of freedom)
 - Chiral domain?
 - 3-K phase+1.5-K phase?
 - Others?

(3) Symmetry of the 3-K phase (p_x or p_y) tends to be enhanced for microfabricated ($\sim \mu m$) samples.