20.04.09, Hakone

Magnetization and magnetocaloric effect measurements on spin-triplet superconductor Sr_2RuO_4

K. Tenya¹, Y. Shimura², T. Sakuraba², T. Sakakibara², M. Yokoyama³, H. Amitsuka⁴, K. Deguchi⁵ and Y. Maeno⁶

¹Faculty of Education, Shinshu University, Nagano 380-8544, Japan
²Institute for Solid State Physics, University of Tokyo, Kashiwa 277-8581, Japan
³Fucalty of Sciences, Ibaraki University, Mito 310-8512, Japan
⁴Department of Physics, Hokkaido University, Sapporo 060-0810, Japan
⁵Department of Physics, Nagoya University, Nagoya 464-8602, Japan
⁶Department of Physics, Kyoto University, Kyoto 606-8502, Japan

20.04.09, Hakone

Magnetization and magnetocaloric effect measurements on spin-triplet superconductor Sr_2RuO_4

Outline

1. Introduction

Basic Properties in 2D Superconductor Sr_2RuO_4 *d*-Vector Dynamics in Sr_2RuO_4 *H*_{c2}-Supression at Low Temperatures

- 2. Experimental results for *H* // *c* Magnetization : Anomalous Peak Effect Magnetocaloric Effect
- 3. Discussions

Possible Origins of the Anomalous Features

4. Summary and future works

C. Bergemann et al. (2003)

Order parameter (OP) $d \propto \hat{\mathbf{z}}(\operatorname{sink}_{x} \pm i \operatorname{sink}_{y})$ SC-domain structure Fermi Surface Gap k_{z} $k_{x}'[100]$ Small arrows: // spin pair ($S_{z} = 0$) Large arrow: orbital moment ($L_z = 1$)

No change of Knight shift down to ~ 500 Oe

H. Murakawa et al. (2004, 2007)

Temperature (K)

¹⁰¹Ru NMR Peak Frequency (MHz)

T (K)

EXPERIMENTAL

Magnetocaloric effect measurements of Sr_2RuO_4 for H//c (ISSP)

Thermodynamic relation

$$\Delta \left(\frac{\delta T}{\delta H}\right)_{H} = -\frac{T}{C} \Delta \left(\frac{\partial M}{\partial T}\right)_{T} \approx -\frac{T}{C} \Delta \left(\frac{\partial M}{\partial H}\right)_{H} \left(\frac{\mathrm{d}H}{\mathrm{d}T}\right)_{T}$$

RESULTS Field-gradient-dependent Magnetization

RESULTS Field-gradient-dependent Magnetization

RESULTS Field-gradient-dependent Magnetization

Second magnetization peak (SMP) appears below 100 Oe. (Clearer SMP in the cleaner sample)

Strong field-gradient dependence of the hysteretic magnetization below the onset field of SMP.

Equilibrium magnetization

$$M_{\rm eq}(H) = \frac{1}{2} [M_{\rm inc}(H) + M_{\rm dec}(H)]$$

Magnetic fields where tiny flux jumps are observed

RESULTS Magnetocaloric Effect

DISCUSSIONS Field-gradient-dependent Magnetization

RESULTS Magnetic torque & magnetization

RESULTS Magnetic torque & magnetization

 $\theta \ge 5^\circ$: No SC suppression at low temperatures

RESULTS Magnetocaloric Effect

- Detailed magnetization measurements for H // [001] are performed in the SC state of Sr₂RuO₄. Anomalous vortex-pinning behaviors are observed at weak fields.
- Second magnetization peak (SMP) anomalies are also observed at low fields. Tiny anomalies are observed in the equilibrium magnetization curves as well.
- The hysteretic magnetization below the SMP-field strongly depend on the fieldgradient.
- Possible origins of these anomalous pinning behaviors are *d*-vector flipping.
- Anomalous tiny flux-jumps are observed only below the SMP field.
- Magnetocaloric effects measurements are performed for H // [001].
 - Future works Detailed magnetocaloric effect measurements Magnetic striction measurements