Theoretical Study of Van-Vleck susceptibility in Sr₂RuO₄

Masafumi Udagawa¹ Youichi Yanase²

¹ Univ. of Tokyo, School of Engineering, Dept. of Applied Physics
 ² Univ. of Tokyo, School of Science, Dept. of Physics

Apr. 20 '09 @Hakone

Outline

\S Introduction

- Non-conserved magnetization and its susceptibility
- Experimental relevance
- Purpose of the study
- \S Model & Method
 - Multi-orbital Hubbard model
 - Dynamical mean-field theory
 - Formulation of Van-Vleck susceptibility
- \S Results
 - Effects of electron correlation of Van-Vleck susceptibility
 - Emergence of diagonal components

Pauli and Van-Vleck susceptibility

$$\chi \rightarrow 0$$
 as $T \rightarrow 0$

Only if spin (magnetization) is conserved

Pauli and Van-Vleck susceptibility

Non-commutativity of magnetization and Hamiltonian

 $M_z \equiv l_z + 2s_z$ does not commute with \mathcal{H} : $[M_z, \mathcal{H}] \neq 0$

 \Rightarrow The ground state acquires magnetization by modulating wavefunction

\S Pauli and Van Vleck

- Pauli $(\chi_P) \Leftarrow$ Fermi surface
- Van Vleck $(\chi_{VV}) \Leftarrow$ away from Fermi surface
- \S Origins of non-commutativity
 - orbital magnetic moment
 - spin-orbit interaction
 - Spontaneous symmetry breaking

Relevance in Knight shift

- Only small reduction of Knight shift at T_c
- How large χ_{VV} can be, compared with χ_P ? \rightarrow relation to electron correlation

Diverging Wilson ratio

 \S "Hyperkagome material" Na $_4 lr_3 O_8$

Y. Okamoto et al., Phys. Rev. Lett.

- Wilson ratio $\rightarrow \infty$ as $T \rightarrow 0$
- Role of large spin-orbit coupling in Ir

Purpose of our study

How electron correlation affects the Van Vleck susceptibility ? \Rightarrow study χ_{VV} of Sr₂RuO₄ as a model case

- \S Questions
 - "Inter-band picture" still valid ?
 - What happens in the vicinity of metal-insulator transition ?
 - Is it possible that $\chi_{VV} >> \chi_P$?
- \S Previous studies

Electron correlation is irrelevant for χ_{VV}

- R. Kubo and Y. Obata, J. Phys. Soc. Jpn., 11 549 (1956)
- Z. Zou and P. W. Anderson, Phys. Rev. Lett., 57 2073 (1986)

 χ_{VV} is renormalized in the same order as z^{-1}

- H. Kontani and K. Yamada, J. Phys. Soc. Jpn., 65 172 (1995)
- T. Mutou and D. Hirashima, J. Phys. Soc. Jpn., 65 366 (1996)

Model: Multi-orbital Hubbard model

$$\mathcal{H} = \mathcal{H}_0 + \mathcal{H}_1 + \mathcal{H}_{ext}.$$

(\mathcal{H}_0 : kinetic energy, \mathcal{H}_1 : interaction energy, \mathcal{H}_{ext} : Zeeman energy)

$$\mathcal{H}_{0} = \sum_{\mathbf{k}} \sum_{s=\pm 1} \sum_{a,b} \epsilon_{ab}(\mathbf{k}) c_{\mathbf{k}as}^{\dagger} c_{\mathbf{k}bs}$$

$$\begin{cases} \epsilon_{00}(\mathbf{k}) = -2t'_{xy} \cos k_{x} - 2t_{xy} \cos k_{y} - \mu, \\ \epsilon_{11}(\mathbf{k}) = -2t_{xy} \cos k_{x} - 2t'_{xy} \cos k_{y} - \mu, \\ \epsilon_{22}(\mathbf{k}) = -2t_{z}(\cos k_{x} + \cos k_{y}) - 4t'_{z} \cos k_{x} \cos k_{y} - \mu \end{cases}$$

$$\mathcal{H}_{1} = U \sum_{a} \sum_{\mathbf{k},\mathbf{k}',\mathbf{q}} c^{\dagger}_{\mathbf{k}'+\mathbf{q}a\downarrow} c^{\dagger}_{-\mathbf{k}'a\uparrow} c_{-\mathbf{k}a\uparrow} c_{\mathbf{k}+\mathbf{q}a\downarrow} + (U-2J) \sum_{a>b} \sum_{ss'} \sum_{\mathbf{k},\mathbf{k}',\mathbf{q}} c^{\dagger}_{\mathbf{k}'+\mathbf{q}as} c^{\dagger}_{-\mathbf{k}'bs'} c_{-\mathbf{k}bs'} c_{\mathbf{k}+\mathbf{q}as} - J \sum_{ss'} \sum_{\mathbf{k},\mathbf{k}',\mathbf{q}} c^{\dagger}_{\mathbf{k}'+\mathbf{q}as} c^{\dagger}_{-\mathbf{k}'bs'} c_{-\mathbf{k}bs} c_{\mathbf{k}+\mathbf{q}as'} + J \sum_{ss'} \sum_{c_{\mathbf{k}'+\mathbf{q}a\downarrow}} c^{\dagger}_{-\mathbf{k}'a\uparrow} c_{-\mathbf{k}b\uparrow} c_{\mathbf{k}+\mathbf{q}b\downarrow}$$

$$-J\sum_{a>b}\sum_{ss'}\sum_{\mathbf{k},\mathbf{k}',\mathbf{q}}c_{\mathbf{k}'+\mathbf{q}as}c_{-\mathbf{k}'bs'}c_{-\mathbf{k}bs}c_{\mathbf{k}+\mathbf{q}as'}+J\sum_{a\neq b}\sum_{\mathbf{k},\mathbf{k}',\mathbf{q}}c_{\mathbf{k}'+\mathbf{q}a\downarrow}c_{-\mathbf{k}'a\uparrow}c_{-\mathbf{k}b\uparrow}c_{\mathbf{k}+\mathbf{q}b}$$

$$\mathcal{H}_{ext} = -h \sum_{\mathbf{k}} \sum_{s=\pm 1} \sum_{a,b} (l_z + 2s_z)_{ab} c_{\mathbf{k}as}^{\dagger} c_{\mathbf{k}bs}$$

$$=\sum_{\mathbf{k}}\sum_{s=\pm 1}\begin{pmatrix}c^{\dagger}_{\mathbf{k}0s} & c^{\dagger}_{\mathbf{k}1s} & c^{\dagger}_{\mathbf{k}2s}\end{pmatrix}\begin{pmatrix}-sh & h & 0\\h & -sh & 0\\0 & 0 & -sh\end{pmatrix}\begin{pmatrix}c_{\mathbf{k}0s}\\c_{\mathbf{k}1s}\\c_{\mathbf{k}2s}\end{pmatrix}.$$

• orbital angular momentum only between d_{yz} abd d_{zx}

Magnetic susceptibility

 \S Definition

$$\chi_{\mathbf{q}}^{zz}(i\nu_{q}) = \frac{1}{N} \int_{0}^{\beta} d\tau \ e^{i\nu_{q}\tau} \langle M_{-\mathbf{q}}^{z}(\tau) M_{\mathbf{q}}^{z}(0) \rangle, \quad M_{\mathbf{q}}^{z} = \sum_{\mathbf{k}} \sum_{s} \sum_{a,b} (l^{z} + 2s^{z})_{ab}^{ss} c_{\mathbf{k}+\mathbf{q}as}^{\dagger} c_{\mathbf{k}bs}$$

 \S Separation of Pauli (χ_P) and Van-Vleck (χ_{VV}) terms (Kontani and Yamada)

$$\chi_{tot} = \lim_{\mathbf{q} \to 0} \lim_{\omega \to 0} \chi_{\mathbf{q}}(\omega)$$
$$\chi_{VV} = \lim_{\omega \to 0} \lim_{\mathbf{q} \to 0} \chi_{\mathbf{q}}(\omega)$$
$$\chi_{P} = \chi_{tot} - \chi_{VV}$$

• χ_P vanishes when the Fermi surface disappears

c.f. Non-commutativity of q-limit and ω -limit (Abrikosov, Gorkov, Dzyaloshinski)

$$G(\mathbf{p},\epsilon)G(\mathbf{p}+\mathbf{q},\epsilon+\omega) = 2\pi i Z^2 \frac{\mathbf{v}\cdot\mathbf{q}}{\omega-\mathbf{v}\cdot\mathbf{q}}\delta(\epsilon)\delta(\xi_k) + \phi(\mathbf{q},\omega)$$

 \Rightarrow Only $\phi(\mathbf{q},\omega)$ (non-singular as to the Fermi surface) contributes to χ_{VV}

Method: dynamical mean-field theory

§ Effective action of impurity model: Repeat (1) and (2) until convergence

$$S_{eff} = \int_{0}^{\beta} d\tau_1 \int_{0}^{\beta} d\tau_2 \sum_{a,b,\sigma} c_{a\sigma}(\tau_1) g_{a,b,\sigma}^{-1}(\tau_1 - \tau_2) c_{b\sigma}(\tau_2) - U \int_{0}^{\beta} d\tau \sum_{\gamma} n_{\gamma\uparrow}(\tau) n_{\gamma\downarrow}(\tau)$$

(1) Impurity solver – Iterative perturbation theory

 $\Sigma_{as}(\tau) = -\left[U^2 G_a(\tau)^2 G_a(-\tau) + 2(U'^2 + U'J_H + J_H^2)G_a(\tau)\sum_{b\neq a} G_b(\tau)G_b(-\tau)\right]$

+
$$J^2 G_a(-\tau) \sum_{b \neq a} G_b(\tau)^2]$$
 + (Hartree-type terms)

(2) Self-consistent determination of Weiss field
$$g_{a,b,\sigma}(\tau)$$

 $g_{a,b,\sigma}^{-1}(i\epsilon_n) = \left[\frac{1}{N}\sum_{\mathbf{k}} G_{a,b,\sigma}(\mathbf{k},i\epsilon_n)\right]^{-1} + \Sigma_{a,b,\sigma}(i\epsilon_n)$
 $\left(G_{a,b,\sigma}(\mathbf{k},i\epsilon_n) = \frac{1}{i\epsilon_n + \mu - t_{ab}(\mathbf{k}) - \Sigma_{a,b,\sigma}(i\epsilon_n)}\right)$

§ Magnetic susceptibility – Irreducible vertex $\Gamma^{(0)}$ expanded up to $O(H_1^1)$ (only RPA term)

Results: χ_P and χ_{VV} **(2** U = U' = J = 0

X

Results: Momentum dependence @ U = U' = J = 0 $\chi_{\mathbf{q}=0}^{zz}(i\nu_q) = \frac{1}{N} \sum_{\mathbf{k}} \chi_{\mathbf{q}=0}^{zz}(i\nu_q, \mathbf{k}): \quad \chi_{\mathbf{q}=0}^{zz}(i\nu_q, \mathbf{k}) = \sum_{ab} \chi_{\mathbf{q}=0ab}^{zz}(i\nu_q, \mathbf{k})$ § Analysis of $\chi_{\mathbf{q}=0}^{zz}(i\nu_q, \mathbf{k})$

• χ_P (from a = b)

§ Fermi surface (d_{xy}, d_{zx}, d_{yz})

• χ_{VV} (from $a \neq b$)

- diagonal part $(a = b) \rightarrow \chi_P$, offdiagonal part $(a \neq b) \rightarrow \chi_{VV}$
- χ_P enhanced near Fermi surface
- χ_{VV} enhanced near intersecting points of d_{yz} and d_{zx} bands

Results: Effects of electron correlation @ T = 0.01, U' = U - 2J§ χ_{VV}

- χ_{VV} and χ_P are enhanced as increasing U
- χ_{VV} is enhanced as increasing U', while χ_P is suppressed.

Results: Bare susceptibility @ T = 0.01, U' = U - 2J§ $\chi_P^{(0)}$ § $\chi_{VV}^{(0)}$

$$\lim \Sigma(\epsilon + i\delta)(d_{yz,zx})$$
 @ $U' = 0.6U$

χ⁽⁰⁾_P is suppressed as increasing U'
 χ⁽⁰⁾_{VV} is enhanced as increasing U' in spite of the larger self-energy effect

How $\chi_{VV}^{(0)}$ becomes enhanced ?

Results: Momentum dependence of $\chi_{VV}^{(0)}$ (U' = 0.6U, J = 0.2U) • U = 0.0 • U = 1.0

• U = 2.0

• U = 3.0

Results: Origin of the contribution from diagonal part

$$\begin{split} \lim_{\omega \to 0} \lim_{\mathbf{q} \to 0} \chi_{\mathbf{q}aa}^{zz(0)}(\omega + i\delta, \mathbf{k}) \\ &= -\int_{-\infty}^{\infty} d\epsilon \; \frac{f(\epsilon)}{\pi} \; \frac{-\mathrm{Im}\Sigma_a(\epsilon + i\delta)}{(\epsilon - \xi_a(\mathbf{k}) - \mathrm{Re}\Sigma_a(\epsilon + i\delta))^2 + (\mathrm{Im}\Sigma_a(\epsilon + i\delta))^2} \\ &\times \frac{\epsilon - \xi_a(\mathbf{k}) - \mathrm{Re}\Sigma_a(\epsilon + i\delta)}{(\epsilon - \xi_a(\mathbf{k}) - \mathrm{Re}\Sigma_a(\epsilon + i\delta))^2 + (\mathrm{Im}\Sigma_a(\epsilon + i\delta))^2} \end{split}$$

- The integrand has a broad ($\simeq Im\Sigma$) peak away from Fermi level
- Relevant in superconducting phase ?
- Temperature dependence ?

Large contribution not from the Fermi level, but from its neighborhood

Summary

 \S We have studied the Pauli and Van-Vleck susceptibility of Sr₂RuO₄ by applying dynamical mean-field theory to the multi-orbital Hubbard model.

 \S We found that the bare Van-Vleck term is enhanced, as increasing electron correlation, in contrast to the Pauli term.

 \S The growth of Van-Vleck term can be attributed to the diagonal part of bare susceptibility, which comes from the momentum and energy region slightly away from Fermi level.

Future problems

 \S Sophistication of calculational methods (Quantum Monte Carlo method, 2nd-order correction in irreducible vertex)

- \Rightarrow Detailed comparison between χ_P , χ_{VV} and Z^{-1}
- \S Temperature dependence of χ_{VV}
- \S Behavior in superconducting phase
- \S Other systems