## Comparative AC Susceptibility Study of $Ag_7O_8NO_3$ and $Sr_2RuO_4$

M.Kriener<sup>1</sup>, H.Takatsu<sup>1</sup>, K.Kawashima<sup>2</sup>, M.Ishii<sup>2</sup>, J.Akimitsu<sup>2</sup>, and Y.Maeno<sup>1</sup>

<sup>1</sup>Department of Physics, Graduate School of Science, Kyoto University <sup>2</sup>Department of Physics, Aoyama-Gakuin University

Ag<sub>7</sub>O<sub>8</sub>NO<sub>3</sub> is a type-II superconductor with a  $T_c$  of 1.04 K and anisotropic upper critical field  $H_{c2}$  of about 800 Oe. The residual-resistivity ratio (RRR) is reported to be 200, reflecting that this material is in the clean limit. The Ginzburg-Landau (GL) parameter is very high, ca. 100 [1]. Sr<sub>2</sub>RuO<sub>4</sub> is also a type-II superconductor with a spin-triplet order parameter and a  $T_c$  of 1.5K. For H parallel to the c axis  $H_{c2}$  is about 750 Oe. Moreover, the GL parameter amounts to 46 and the RRR is of the order of 1000 [2]. Obviously both compounds exhibit similar physical properties, i.e. the values of  $T_c$ ,  $H_{c2}$ , and RRR are on the same order of magnitude, although the symmetry of the order parameter is essentially different.

In this talk we will present a detailed investigation of the H-T phase diagrams of Ag<sub>7</sub>O<sub>8</sub>NO<sub>3</sub> and Sr<sub>2</sub>RuO<sub>4</sub> obtained by measuring the complex AC susceptibility  $\chi_{AC} = \chi' + i\chi''$ . In spite of the interestingly similar physical properties of the two systems, it turns out that the qualitative behavior of  $\chi_{AC}$  differs significantly (Fig.1). For Ag<sub>7</sub>O<sub>8</sub>NO<sub>3</sub> we observe a pronounced two-peak structure in the imaginary part  $\chi''$  at low DC fields which merge at higher fields. The fact that the second peak already exists at low fields rules out an explanation based on simple vortex effects. In contrast to this for Sr<sub>2</sub>RuO<sub>4</sub> in zero field a sharp single peak is observed and a second peak develops at higher DC fields, indicating a collective pinning of the softened vortex lattice. Moreover, we observe a hysteresis of the second peak in higher DC fields between field-cooling and subsequent warming runs.

Whereas the two-peak structure for  $Sr_2RuO_4$  can be explained by vortex-lattice effects, for  $Ag_7O_8NO_3$  the origin of the second peak remains unclear.



Fig. 3: AC susceptibility for  $Ag_7O_8NO_3$  (left) and  $Sr_2RuO_4$  (right). The upper two panels (a) and (c) show  $\chi'(T)$  (real part; diamagnetic shielding), the lower (b) and (d)  $\chi''(T)$ (imaginary part; energy dissipation) indifferent  $H_{DC}$ .

[1] M. B. Robin et al., Phys. Rev. Lett. **17**, 917 (1966).

[2] A. P. Mackenzie and Y. Maeno, Rev. Mod. Phys. 75, 657 (2003).