Magnetization Study of the Superconductivity in Sr₂RuO₄

K. Tenya,¹ R. Yamahana,¹ M. Yokoyama,² H. Amitsuka,¹ K. Deguchi,³ and Y. Maeno^{4,5}

¹Department of Physics, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan.
²Department of Materials and Biological Sciences, Ibaraki University, Mito 310-8512, Japan.
³Department of Physics, Graduate School of Science, Nagoya University, Nagoya 454-8602, Japan.
⁴Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
⁵International Innovation Center (IIC), Kyoto University, Kyoto, 606-8501, Japan.

The layered ruthenate Sr₂RuO₄ has attracted much interest because of its spin-triplet superconductiv-

ity. Recent specific heat experiments under in-plane fields revealed the existence of a novel superconducting transition just below $H_{c2}[1]$. In order to clarify the high-field phase, we performed detailed magnetization measurements down to 0.1 K.

Figure 1 shows an example of the magnetization curves in Sr_2RuO_4 for H/[100]. A small but distinct kink structure is observed at 8.9 kOe (= H_k), indicating the presence of an additional superconducting phase transition [2]. A rapid increase of magnetization is also observed just below H_{c2} . These anomalies disappear when the field is tilted from the RuO₂ plane only by a few degrees. Possible origins of the magnetization anomaly are discussed from the viewpoint of the pairing symmetry.

[1] K. Deguchi et al., J. Phys. Soc. Jpn. 71, 2839 (2002)

[2] K. Tenya et al., J. Phys. Soc. Jpn. 75, 023702 (2006)

Fig.1: Magnetization curves of Sr₂RuO₄