An Overview of the BCS-BEC Crossover in a Gas of Fermi Atoms with a Feshbach Resonance

Y. Ohashi

Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-0061, Japan

The BCS-BEC crossover phenomenon observed in superfluid Fermi gases (⁴⁰K and ⁶Li) is one of the most exciting topics in the current research of cold atom physics. In a two-component Fermi gas, the strength of a pairing interaction can be tuned by adjusting the threshold energy of a Feshbach resonance. Using this tunable interaction, one can continuously change the character of superfluidity from the weak coupling BCS-type to the Bose-Einstein condensation (BEC) of tightly bound Cooper pairs (that have been already formed far above the superfluid phase transition temperature T_c). This interesting crossover phenomenon thus enables us to study fermion superfluidity (such as metallic superconductivity and superfluid ³He) and boson superfluidity (such as superfluid ⁴He) in a unified manner. Since T_c in the strong coupling BEC regime reaches about $0.2T_F$ (where T_F is the Fermi temperature), this research field would be also useful for the study of high- T_c superconductivity.

In this talk, I will give a brief review on the recent progress of the BCS-BEC crossover physics in cold Fermi gases. I will also present my research plan on a strongly correlated atomic gas in an optical lattice.