特定領域 Physics of New Quantum Phases in Superclean Materials 発足研究会

Mott transition and spin degrees of freedom in quasi－2D with triangular lattice

```
A01 班 鹿野田 一司 (東大物工 & CREST-JST)
```

賀川	史敬	D2
岩瀬	文達	D1
黒崎	洋輔	M2
児玉	一宗	M2
笠原	甫	M1
小橋	寿彦	M1

清水 康弘 基礎特研，理研
宮川 和也 助手
藤山 茂樹 講師

New Quantum Phases on Triangular lattice

Spin-1/2 on the lattice (1/2-filled band)

Charge-1/2 on the lattice

 (1/4-filled band)

Antiferromagnetic interaction
frustration in
spin and charge

Inter-site Coulomb interaction

$$
\mathcal{H}=\sum_{i, j, \sigma} t_{i j} C_{i \sigma}^{\dagger} C_{j \sigma}+\sum_{i} U n_{i \uparrow} n_{i \downarrow}+\sum_{\langle i j\rangle} V_{i j} n_{i} n_{j}
$$

Q2D organics $\boldsymbol{\kappa}$-(ET) $\mathbf{2}_{2}$ X; spin-1/ 2 on triangular lattice

Kino \& Fukuyama _ _ dimer model

Triangular lattice Half-filled band

No long-range magnetic ordering down to 30 mK

Magnetic susceptibility

${ }^{1} H$ NMR spectrum

${ }^{13}$ C NMR

Line broadening
Spectra

Also, Kawamoto et al., PRB 70 (2004) 060510

Low-lying spin excitation

Mott transition in κ - $(\mathrm{ET})_{2} \mathrm{Cu}_{2}(\mathrm{CN})_{3}$ under pressure

Phase diagram of spin $1 / 2$ on triangular lattice $\mathrm{k}-(\mathrm{ET})_{2} \mathrm{Cu}_{2}(\mathrm{CN})_{3}$

Mott transition

Competition between Coulomb energy and kinetic energy

\longmapsto Mott criticality is identical with classical liquid-gas criticality?

Mott transition in by pressure

$$
\begin{gathered}
\kappa-(\mathrm{ET})_{2} \mathrm{Cu}\left[\mathrm{~N}(\mathrm{CN})_{2}\right] \mathrm{Cl} \\
\left(t^{\prime} / t=0.75\right)
\end{gathered}
$$

Kagawa et al., PRB 69 (2004) 064511

Mott phase diagram

Kagawa et al., PRL 93 (2004) 127001

Mott Criticality and Mott scaling

Unconventional critical exponents $(\delta, \beta, \gamma) \sim(2,1,1)$

Imada, PRB72 (2005)075113 JPSJ64(1995)2954

Scaling relation is fulfilled

$$
\delta=1+(\gamma / \beta)
$$

$$
\begin{aligned}
& \text { Scaling function } \\
& G_{\text {met }}(P, T)-G_{\mathrm{C}}=(\Delta P)^{1 / \triangleright} f_{ \pm}\left(\frac{\Delta P}{|\Delta T|^{\beta \gamma}}\right)
\end{aligned}
$$

Role of spin degrees of freedom in phase diagram

Entropy of the spin liquid
is larger than that of Fermi liquid!

$\theta-(E T)_{2} X ;$ charge- $1 / 2$ on triangular lattice

O2D conducting ET plane

- a quarter-filled hole band
- isosceles triangular lattice $\left(\boldsymbol{t}_{\mathrm{p}}>\boldsymbol{t}_{\mathrm{c}}\right)$
H. Mori et.al PRB (1998)

Electron crystalization vs glass in $\theta-(E T)_{2} R b Z n(S C N)_{4}$

Transport properties of electronic glass

Thermal cycle

Relaxation from glass to crystal

Spin $1 / 2$ on triangular lattice

Spin liquid

Theoretical
Imada-Watanabe, Sorella, P.A. Lee
Mismuich et al., Motrunich, M.P.A.Fischer McKenzie, Schmalian,
Watanabe-Yokoyama-Tanaka,
The vicinity of Mott transition is the key.

Imada

Charge $1 / 2$ on triangular lattice

Frustration-induced quantum melting

Merino, Seo and Ogata (2004)

In this project,

Anitotropic pressure \& doping

