特定領域 Physics of New Quantum Phases in Superclean Materials 発足研究会

2005. 12.16

Mott transition and spin degrees of freedom in quasi-2D with triangular lattice

A01 班 鹿野田 一司 (東大物工& CREST-JST)

賀川	史敬	D2
岩瀬	文達	D 1
黒崎	洋輔	M2
児玉	一宗	M2
笠原	甫	M1
小橋	寿彦	M 1

清水 康弘 基礎特研、理研 宮川 和也 助手 藤山 茂樹 講師 New Quantum Phases on Triangular lattice

Spin-1/2 on the lattice (1/2-filled band) Charge-1/2 on the lattice (¼-filled band)

Antiferromagnetic interaction

Inter-site Coulomb interaction

$$\mathcal{H} = \sum_{i,j,\sigma} t_{ij} C_{i\sigma}^{\dagger} C_{j\sigma} + \sum_{i} U n_{i\uparrow} n_{i\downarrow} + \sum_{\langle ij \rangle} V_{ij} n_{i} n_{j}$$

Q2D organics κ -(ET)₂X; spin-1/2 on triangular lattice

No long-range magnetic ordering down to 30 mK

¹H NMR spectrum

Shimizu et al., PRL 91 (2003) 107001

 $H = 8T \perp layer$

Line broadening

Also, Kawamoto et al., PRB 70 (2004) 060510

Mott transition in κ -(ET)₂Cu₂(CN)₃ under pressure

No magnetic ordering under pressure No change in ¹H NMR spectra

Phase diagram of spin $\frac{1}{2}$ on triangular lattice κ -(ET)₂Cu₂(CN)₃

Kurosaki et a., PRL 95 (2005) 177001

Mott transition

Competition between Coulomb energy and kinetic energy

Mott criticality is identical with classical liquid-gas criticality?

Mott transition in by pressure

 κ -(ET)₂Cu[N(CN)₂]Cl (t'/t = 0.75)

Resistance on (T,P) plane

Kagawa et al., PRB 69 (2004) 064511

Mott phase diagram

Kagawa *et al.*,

Kagawa et al., PRL 93 (2004) 127001

Mott Criticality and Mott scaling

Unconventional critical exponents $(\delta, \beta, \gamma) \sim (2, 1, 1)$

Imada, PRB72 (2005)075113 JPSJ64(1995)2954 Scaling relation is fulfilled $\delta = 1 + (\gamma / \beta)$

Kagawa et al., Nature 436 (2005) 534

Entropy of the spin liquid is larger than that of Fermi liquid !

θ –(ET)₂X; charge-1/2 on triangular lattice

in-plane structure

Q2D conducting ET plane

- a quarter-filled hole band
- isosceles triangular lattice $(t_{\rm p} > t_{\rm c})$

Electron crystalization vs glass in θ -(ET)₂RbZn(SCN)₄

θ-RbZn Transport properties of electronic glass

Thermal cycle

Relaxation from glass to crystal

Spin ¹/₂ on triangular lattice

Spin liquid

Spin order $\uparrow \downarrow \uparrow \downarrow \uparrow \downarrow$

Theoretical

Imada-Watanabe, Sorella, P.A. Lee Mismuich et al., Motrunich, M.P.A.Fischer McKenzie, Schmalian, Watanabe-Yokoyama-Tanaka,

The vicinity of Mott transition is the key.

Imada

Charge ¹/₂ on triangular lattice

In this project,

Anitotropic pressure & doping

