Quantum Critical Behavior in Geometrically-Frustrated Systems

Yukitoshi Motome (RIKEN)

RIKEN

科研費特定領域研究「スーパークリーン物質で実現する新しい量子相の物理」 領域発足研究会 2005年12月16日 東京大学本郷キャンパス 小柴ホール

Outline

scope of this study

Iocalized spin systems

 antiferromagnetic Heisenberg model on pyrochlore lattice

itinerant electron systems

- Hubbard model on triangular lattice
- electron systems coupled with classical degrees of freedom

Quantum Critical Point and Related Phenomena

- Iong-range order is suppressed by tuning parameters, leading to quantum critical point
 - classical scaling regime shrinks as $T_c \rightarrow 0$
 - para phase above is governed by the nature of quantum critical point
- novel states? novel universality class?
- how to control? frustration and competing interactions

S. Sachdev, 'Quantum Phase Transition'

Scope of This Study...

microscopic theory of the quantum critical behavior

- specific microscopic model c.f. field theory
- for both localized spin systems and itinerant electron systems
- tuning frustration and competing interactions
- unbiased numerical simulation beyond perturbation, mean-field approximation, ...

Localized Spin Systems

fingerprint of quantum critical behavior in classical-spin Heisenberg model on pyrochlore lattice

in collaboration with Karlo Penc and Nic Shannon

Pyrochlore Antiferromagnets

• classical Heisenberg model with nearest-neighbor couplings only $H = J \sum \vec{S}_i \cdot \vec{S}_j$

 $\langle ij \rangle$

severe frustration: no long-range ordering down to T=0

macroscopic degeneracy in the ground state: classical spin liquid (Moessner and Chalker, 1998)

power-law spin correlation ~ $1/r^3$ (Henley, 2005)

Perturbations to Classical Spin Liquid State

further-neighbor exchanges $J_{\text{further}} \sum_{ij} \vec{S}_i \cdot \vec{S}_j$ \rightarrow magnetic (dipole) long-range order

biquadratic interaction $-b \sum_{\langle ij \rangle} (\vec{S}_i \cdot \vec{S}_j)^2$ \rightarrow spin nematic (quadrupole) order

external magnetic field -

$$-\sum_i ec{h}\cdotec{S}_i$$

Results at T=0

Penc et al., 2004

- solutions for 4-sublattice ordering with wave vector **q**=0 (J_{further} are implicitly taken into account)
- for finite biquadratic coupling b>0: half-magnetization plateau (blue area in the phase diagram)
- 3-up I-down collinear state in each tetrahedron unit

Monte Carlo Results at Finite Temperatures

- plateau remains robust at finite temperatures
- all the phases show magnetic (dipole) ordering, stabilized by J_{further}

 $T_c \sim O(z J_{further})$

good agreement with experiments in Cr spinels, HgCr₂O₄ and CdCr₂O₄ (H. Ueda *et al.*, 2005, unpublished)

Question

energy scale of magnetic (dipole) ordering is set by $J_{further}$: T_c goes to zero as $J_{further} \rightarrow 0$

What happens when $J_{further} \rightarrow 0$, i.e. $T_c \rightarrow 0$? Does the plateau disappear? Degeneracy? Fingerprint of quantum critical behavior?

'Spin-liquid' Plateau

 $J_{\text{further}} \rightarrow 0$, but a finite b

 nearest-neighbor coupling only: no magnetic order down to the lowest temperature

 But the plateau survives as the case with dipole ordering.

... Why? How?

Spin Collinearity grows...

• spin collinearity rapidly grows at T* and becomes long range at low T $P(\vec{r}_{ij}) = \frac{3}{2} \left[\left\langle (\vec{S}_i \cdot \vec{S}_j)^2 \right\rangle - \frac{1}{3} \right]$

crossover temperature T* corresponds to a broad peak of the specific heat

entropy release from $(\uparrow \uparrow \uparrow \downarrow)$ formation

T* scales to b

Spin 'Pseudogap' State with Macroscopic Degeneracy

- pyrochlore is corner-sharing network of tetrahedra - loose connection
- b term selects îîî î state in each tetrahedron, but the position of ↓ may be incoherent: collinear state without any magnetic order

macroscopic degeneracy ~1.3^N

spin gap persists - 'pseudogap'

Plateau 'Liquid-Solid' Transition

para → preformed local order with pseudo gap
 → gapped long-range ordered phase

Perspectives...

systematic study of the (h-b-J_{further}-T) phase diagram competing phases at the critical point? order from disorder?

critical phenomena of the spin nematic (quadrupole) transition

effects of quantum fluctuations

Itinerant Electron Systems (ongoing projects...)

Hubbard model on frustrated lattices

in collaboration with Takashi Koretsune and Akira Furusaki

electron systems coupled with classical degrees of freedom

Frustrated Hubbard Model at zero temperature

- Hubbard model on anisotropic triangular lattices
- PIRG results: phase transitions between para-metal and non-magnetic insulator
 - discontinuous at t'<t
 - (plausibly) continuous at t'~t
- correlator-projection results: Ist-order transition surface with a finite-T critical end curve for small t'/t

Onoda and Imada, 2003

Scope...

quantum critical point ?

If yes, what is the nature of quantum critical point ?

• scaling arguments (Imada, 2005)

Does dimensionality matter ?

• cf. D=∞ result

different approaches from PIRG

 transcorrelated method, finite-T Lanczos method (Koretsune, P-07)

Electron Systems Coupled with Classical Degrees of Freedom

Holstein model $H = -\sum_{ij} t_{ij} (c_i^{\dagger} c_j + \text{H.c.}) - g \sum_i n_i x_i + \frac{k}{2} \sum_i x_i^2$ electron-phonondouble-exchange model $H = -\sum_{ij,\sigma} t_{ij} (c_{i\sigma}^{\dagger} c_{j\sigma} + \text{H.c.}) - J_{\text{H}} \sum_i \vec{\sigma}_i \cdot \vec{S}_i$ electron-spinFalicov-Kimball model $H = -\sum_{ij} t_{ij} (c_i^{\dagger} c_j + \text{H.c.}) + U \sum_i c_i^{\dagger} c_i d_i^{\dagger} d_i$ electron-charge

rich physics: metal-insulator transition, magnetism, ...

- advantages:
 - no negative-sign problem in Monte Carlo simulation even in frustrated systems
 - order-N method (Furukawa and Motome, 1999, 2000, 2004)

Example: Extended Double-Exchange Models

$$H = -\sum_{ij,\sigma} t_{ij} (c_{i\sigma}^{\dagger} c_{j\sigma} + \text{H.c.}) - J_{\text{H}} \sum_{i} \vec{\sigma}_{i} \cdot \vec{S}_{i}$$
$$+ \sum_{ij} J_{ij}^{\text{AF}} \vec{S}_{i} \cdot \vec{S}_{j} - g \sum_{i} n_{i} x_{i} + \frac{k}{2} \sum_{i} x_{i}^{2}$$

possible phase competitions at quarter filling in unfrustrated cases:

- FM vs AFI (flux type)
- FM vs COI (checkerboard type)

In the frustration → collapse of the commensurate orderings
Is it possible to investigate quantum critical behavior ?

Sen et al., unpublished

Blueprints...

localized spin systems

- further study of pyrochlore antiferromagnetic Heisenberg model
- quantum vs. thermal fluctuations?
- other systems?
- itinerant electron systems
 - Hubbard model on frustrated lattices
 - electron systems coupled with classical degrees of freedom