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Outline

scope of this study

localized spin systems

• antiferromagnetic Heisenberg model 
on pyrochlore lattice

itinerant electron systems

• Hubbard model on triangular lattice

• electron systems coupled with 
classical degrees of freedom



Quantum Critical Point and 
Related Phenomena

long-range order is suppressed by 
tuning parameters, leading to 
quantum critical point

• classical scaling regime shrinks as Tc→0

• para phase above is governed by the 
nature of quantum critical point

novel states? novel universality class?

how to control? - frustration and 
competing interactions

S. Sachdev, ‘Quantum Phase Transition’

phase diagram of O(N) rotor model
with 2<d<3 and N→∞



Scope of This Study...

microscopic theory of the quantum critical behavior

• specific microscopic model - c.f. field theory

• for both localized spin systems and itinerant 
electron systems

• tuning frustration and competing interactions

• unbiased numerical simulation beyond 
perturbation, mean-field approximation, ...



Localized Spin Systems

fingerprint of quantum critical behavior 
in classical-spin Heisenberg model on 
pyrochlore lattice
in collaboration with Karlo Penc and Nic Shannon



Pyrochlore Antiferromagnets

classical Heisenberg model with 
nearest-neighbor couplings only

severe frustration: no long-range 
ordering down to T=0

macroscopic degeneracy in the 
ground state: classical spin liquid 
(Moessner and Chalker, 1998)

power-law spin correlation ~ 1/r3 
(Henley, 2005)

H = J
∑

〈ij〉

!Si · !Sj



Perturbations to 
Classical Spin Liquid State

further-neighbor exchanges

→ magnetic (dipole) long-range order

biquadratic interaction

→ spin nematic (quadrupole) order

external magnetic field −
∑

i

!h · !Si

−b
∑

〈ij〉

(!Si · !Sj)2

Jfurther

∑

ij

!Si · !Sj



solutions for 4-sublattice ordering 
with wave vector q=0 (Jfurther are 
implicitly taken into account)

for finite biquadratic coupling 
b>0: half-magnetization plateau 
(blue area in the phase diagram)

3-up 1-down collinear state in 
each tetrahedron unit

Results at T=0
Penc et al., 2004
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plateau remains robust at 
finite temperatures

all the phases show 
magnetic (dipole) ordering, 
stabilized by Jfurther

Tc ~ O(z Jfurther)

good agreement with experiments in 
Cr spinels, HgCr2O4 and CdCr2O4 
(H. Ueda et al., 2005, unpublished)

Monte Carlo Results
at Finite Temperatures
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Question

energy scale of magnetic (dipole) ordering is 
set by Jfurther : Tc goes to zero as Jfurther→0

What happens when Jfurther→0, i.e. Tc→0 ? 
Does the plateau disappear? Degeneracy? 
Fingerprint of quantum critical behavior?



‘Spin-liquid’ Plateau

Jfurther→0, but a finite b

nearest-neighbor coupling 
only: no magnetic order down 
to the lowest temperature

But the plateau survives as 
the case with dipole ordering.

... Why? How?
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spin collinearity rapidly 
grows at T* and becomes 
long range at low T

crossover temperature T* 
corresponds to a broad peak 
of the specific heat

entropy release from  
‘↑↑↑↓’ formation

T* scales to b

Spin Collinearity grows...

P (!rij) =
3
2

[〈
(!Si · !Sj)2

〉
− 1

3

]
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pyrochlore is corner-sharing network 
of tetrahedra - loose connection

b term selects ↑↑↑↓ state in each 
tetrahedron, but the position of ↓ 
may be incoherent: collinear state 
without any magnetic order

macroscopic degeneracy ~1.3N

spin gap persists - ‘pseudogap’

Spin ‘Pseudogap’ State with
Macroscopic Degeneracy

plateau solid

plateau liquid



Pseudogap vs Gapped LRO
Plateau ‘Liquid-Solid’ Transition

0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.02 0.04 0.06 0.08

T*(Cv)

T*(χ)
Tc

T

|J
3
|

paramagnet

gapped phase with
4-sublattice LRO
(plateau solid)

pseudogap state
(plateau liquid)

phase diagram (b=0.6, h=4)

para → preformed local order with pseudo gap 
→ gapped long-range ordered phase

3rd-neighbor exchange



Perspectives...

systematic study of the (h-b-
Jfurther-T) phase diagram

competing phases at the 
critical point? order from 
disorder?

critical phenomena of the spin 
nematic (quadrupole) transition

effects of quantum fluctuations

antiferro J3 ferro J3
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Itinerant Electron Systems
(ongoing projects...)

Hubbard model on frustrated lattices
in collaboration with Takashi Koretsune and Akira Furusaki

electron systems coupled with classical 
degrees of freedom



Frustrated Hubbard Model
at zero temperature

Hubbard model on anisotropic 
triangular lattices

PIRG results: phase transitions between 
para-metal and non-magnetic insulator

• discontinuous at t’<t

• (plausibly) continuous at t’~t

correlator-projection results: 1st-order 
transition surface with a finite-T critical 
end curve for small t’/t

magnetic symmetry breaking at all momenta and all U
studied, namely, for U=t ! 10.

The phase diagram of the t-t0-TH model constructed from
our calculations is illustrated in Fig. 6. A remarkable feature
is the emergence of the NMI phase sandwiched by MI and
AF transitions. This is in contrast with the Hartree-Fock
results where the MI transition occurs at larger U=t than the
AF transition. The triangular lattices were also studied in the
spin-1/2 Heisenberg model corresponding to the limit
U ! 1.9–11) Although a decisive conclusion cannot be
drawn due to the lack of powerful techniques, it was claimed
from small cluster studies or series expansions that either a
long-range AF order or a dimer order appears in this model
on a regular triangular lattice. This suggests the possibility
that the reduction of the local moment due to charge
fluctuations at U reduced to a finite value drives the
destruction of the order. In fact, for example, the local
moment ml ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hni# 2D
p

=2 is reduced to ml $ 0:4 at the
phase boundary U=t ¼ 5:2 at t0=t ¼ 1:0. The structure of the
phase diagram has a similarity with that of the Hubbard
model on a square lattice with next-nearest-neighbor
transfer.8)

Insulators with some translational symmetry breakings
such as the AF and dimer orders may be adiabatically
continued to band insulators due to the band gap formation
through extension of the unit cell and the folded Brillouin
zone, and hence do not belong to the genuine Mott insulator
discussed above. We first have to note that it is hard to prove
the existence of the genuine Mott insulator because it is
difficult to prove the absence of all the possible translational
symmetry breakings. Under this circumstance, one available
way to obtain insight to this problem is to examine every
symmetry breaking ever proposed and judge the plausibility
of occurence of such a phase.

Along this line of motivation, we have further calculated
correlations for several symmetry breakings claimed in the
literature such as dimer order,11,12) plaquette order13) and
various density waves14) in this remarkable NMI phase. Here
the density wave correlation is defined by D!ðqÞ ¼

h!y
!ðqÞ!!ðqÞi, where !y

!ðqÞ ¼
P

k;" f!ðkÞc
y
k"ckþq;" . We have

studied the cases f1sðkÞ ¼ cos kx þ cos ky, f2sðkÞ ¼
2 cos kx cos ky, f1dðkÞ ¼ cos kx # cos ky, and f2dðkÞ ¼
2 sin kx sin ky. We note the case 1d represents the order
parameter for the staggered flux (or d-density wave) state.14)

Figure 7 shows typical size scalings of these density wave
correlations for the t-t0-TH model. Other types show similar
behaviors. It does not seem to show symmetry breakings and
the correlation actually remains rather short ranged in all the
parameter spaces we have studied (0 ! U=t ! 10 and
0:5 ! t0=t ! 1:0). The possibility of dimer, plaquette and
density wave orders has also been examined in the Hubbard
model on a square lattice with diagonally crossing transfers
between next-nearest-neighbor sites. The size scalings again
suggest the absence of these translational symmetry break-
ings.15) Although these results do not exclude the possiblity
of translational symmetry breakings other than those studied
here, we conclude that the theoretically proposed phases so
far are unlikely to be realized in our phase hence the
existence of a genuine Mott insulating state becomes much
more plausible.

Our result leads us to an intriguing view for recent
experimental results on organic compounds. As discussed
above, the t-t0-TH model provides the simplest effective
Hamiltonian for the #-type ET compounds if we may take
the dimerization of two parallel ET molecules to be large.3)

The HOMO band is split by the dimerization and the upper
band provides the effective Hubbard model at half filling.
The effective interaction for U in this case is taken as
Ueff ¼ 2tb1 þ UET

2 ½1#
p

1þ ð4tb1UET
Þ2), where UET is the origi-

nal onsite Coulomb repulsion for the ET molecule and tb1 is
the intradimer transfer.

Among the available compounds, the band structure
calculation16,17) suggests #-(ET)2Cu2(CN)3 has the largest
ratio of t0=t $ 1:0 (t $ 0:055 eV and t0 $ 0:058 eV) with
rather large Ueff=t $ 8:2. This compound is close to the
metal-insulator phase boundary because a small pressure of
around 0.05GPa drives the transformation from the insulat-
ing to the superconducting phase. The ESR measurement of
#-(ET)2Cu2(CN)3 at ambient pressure, as well as the
susceptibility, suggests that the insulating phase remains
nonmagnetic.17) Very recent NMR data19) also suggest that
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Fig. 7. Size scaling for the d density wave (stuggered flux) correlation
!d ¼ jD1dðqpeakÞj=N for t0=t ¼ 1:0.

Fig. 6. Phase diagram of t-t0 TH model in the plane of U=t at t0=t. AFI,
NMI and PM represent AF insulator, nonmagnetic insulator, and
paramagnetic metal, respectively. Calculations have been carried out at
the cross points. The arrow shows speculated boundary from AFI to the
dimer insulator in the limit U ! 1 for the J1-J2 model.11)
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discontinuous continuous(?)

the Hubbard bands. Such significant modifications at the

second-order CPM from the conventional DMFA !Ref. 27"
are due to inclusion of spatial correlations mainly through

superexchange interaction. Besides, present results reproduce

a direct gap for t!!0 at T/t!0.02. A(# ,k) shows a remark-
able similarity to the QMC results.23 Deviations of the mo-

mentum distribution at T/t!0.02 from T!0 QMC data23

turn out to be less than 10% for U/t!4.
Next, we discuss the MIT as a function of t! at half fill-

ing. The double occupancy $n↑n↓% exhibits a jump or a sin-
gularity depending on the first-order or second-order

bandwidth-control MIT from arguments on the MIT in the

effective action for spins and charges.9,10 $n↑n↓% is plotted
against !t!/t! in Fig. 3. With decreasing T, the maximum

slope of $n↑n↓% versus !t!/t! increases. For U/t ! 3 and 4,

$n↑n↓% exhibits a jump at !t!!!tMIT! (U ,T) below the critical

temperature Tcr(U). &Alternatively, if we vary U with t! be-
ing fixed, $n↑n↓% exhibits a jump at some value UMIT(t!,T).'
The jump indicates a first-order transition.9 More correlated

phase for !t!!"tMIT! (U ,T) is insulating while less correlated

phase with larger $n↑n↓% for !t!!#tMIT! (U ,T) is metallic.

This is illustrated for the density of states ((#)

)(1/N)*kA(# ,k) for U/t!4 at T/t!0.02 in Fig. 4. Here,
an MIT occurs around t!/t!$0.2525 with abrupt shifts in
the spectral weights from the upper Hubbard band to the

lower. The hysteresis seems to be suppressed; the higher-

order projection enables us to escape from a metastable so-

lution. Due to the particle-hole asymmetry introduced by t!,
the Kondo resonance does not appear in a particle-hole sym-

metric manner as in the fully frustrated Bethe lattice.7 This

first-order MIT below Tcr accompanies a discontinuous

change in single-particle dispersions, while the dispersions

continuously evolve at T+Tcr . The insulating dispersion

with a choice of t!0.25 eV agrees with that of La2CuO4.
26

In this formalism, spatial correlations are restored as the k

dependence of ,1(# ,k). Neglecting the k dependence of
,n(# ,k) with finite n+2 does not automatically guarantee
the Luttinger sum rule except the trivial case of n!1. In-
cluding the k dependence of ,1(# ,k) in the case of n+2
modifies the shape of the Fermi surface and does not neces-

sarily keep the Luttinger volume, if ,1(# ,k) in the both
limits of low energy and high momentum resolutions is not

exactly obtained for finite n. At n!1, the Fermi surface

FIG. 3. !Color" $n↑n↓% versus !t!/t! at several U’s and T’s.

FIG. 4. !Color" Density of states ((#) corresponding to metallic and
Mott-insulating solutions.

FIG. 5. !Color" The jump in $n↑n↓% !open symbols" and the inverse of
its maximum slope q !filled symbols" versus !t!/t! are plotted against T/t
with scaling functions. This gives a T#0 second-order critical point Tcr as
an end point of the first-order MIT line „Tcr(U),tcr! (U)… with tcr! (U)
!t
*
! &U ,Tcr(U)' .

FIG. 6. !Color" Phase diagram of the 2D half-filled Hubbard model

obtained by the present theory. The critical curve exists as illustrated by the

red line. The green surface denoted as T
*
gives a metal-insulator crossover.
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MOTT TRANSITIONS IN THE TWO-DIMENSIONAL . . . PHYSICAL REVIEW B 67, 161102 !2003"

161102-3

Onoda and Imada, 2003
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Scope...

quantum critical point ?

If yes, what is the nature of 
quantum critical point ?

• scaling arguments (Imada, 2005)

Does dimensionality matter ?

• cf. D=∞ result

different approaches from PIRG

• transcorrelated method, 
finite-T Lanczos method 
(Koretsune, P-07)

T

U

t’

T

U

t’



Electron Systems Coupled with 
Classical Degrees of Freedom

rich physics: metal-insulator transition, magnetism, ...

advantages:

• no negative-sign problem in Monte Carlo simulation 
even in frustrated systems

• order-N method (Furukawa and Motome, 1999, 2000, 2004)

Holstein model

double-exchange model H = −
∑

ij,σ

tij(c†iσcjσ + H.c.)− JH

∑

i

!σi · !Si

H = −
∑

ij

tij(c†i cj + H.c.)− g
∑

i

nixi +
k

2

∑

i

x2
i

H = −
∑

ij

tij(c†i cj + H.c.) + U
∑

i

c†icid
†
idiFalicov-Kimball model

electron-phonon

electron-spin

electron-charge



Example: Extended Double-
Exchange Models

possible phase competitions at 
quarter filling in unfrustrated cases:

• FM vs AFI (flux type)

• FM vs COI (checkerboard type)

frustration → collapse of the 
commensurate orderings

Is it possible to investigate quantum 
critical behavior ?

6

TABLE I: Comparison of the CPU times for the algorithms
indicated, using an Intel Pentium 4 (clock speed 3.06Gz) com-
puter. Shown are results for different square lattices of size
L×L, assuming 2000 MC steps for thermalization, and 2000
MC steps for measurements (taken every 10 MC steps). Since
the TPEM can be parallelized, some results were obtained us-
ing more than one CPU, as indicated.

L Algorithm # of CPUs CpuTime(h)
12 DIAG 1 19.48
12 TPEM 2 5.46
20 TPEM 2 18.08
32 TPEM 8 25.92

Heisenberg model, the antiferromagnetic spin correla-
tions exponentially diverge with decreasing temperature.
An exponential behavior, defines via the exponent a tem-
perature scale T ∗ below which the correlations are much
larger than any lattice size that can be practically stud-
ied numerically. This may seem like a problem, but it is
not: very large correlation lengths also render the system
very susceptible to small perturbations. In particular, we
have shown that tiny deviations from the fully symmetric
Heisenberg model, such as introducing Ising anisotropies,
stabilize T ∗ into a true critical temperature. In fact,
simulations performed with Ising anisotropies typically
reveal no important differences with the results obtained
with fully vector models on finite systems. Small cou-
plings in the third direction play a similar role. As a
consequence, for all practical purposes the critical be-
havior observed in the present studies describes properly
the expected physics of manganite models, which are al-
ways embedded in three dimensional environments, and
that have small anisotropies. A final note on this sub-
ject: The CE phase of manganites can show a finite-
temperature transition even in two dimensions, since the
order parameter for charge order can be Ising type.

The CPU time needed to obtain the results shown in
this subsection follows the expected trends reported in
previous investigations (see Table I). In particular, the
TPEM time needed for a 32×32 cluster is comparable to
the DIAG time on a 12×12 cluster, a very encouraging
result. Of course, this comparison will be even more fa-
vorable to the TPEM with increasing number of CPU’s
for parallelization.

C. Phase Diagram

Using the TPEM, the phase diagram of the one-
band model for manganites at 〈n〉=0.5 was obtained (see
Fig. 5). The transition between the FM and Flux states
at low temperatures is of first order. In fact, in the ab-
sence of quenched disorder the zero temperature result
can be obtained by using the perfect classical spin config-
urations for both the FM and Flux states, and calculating
their energy vs JAF (not shown). By this procedure the
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FIG. 4: (color online). Spin structure factor vs. T for
JAF=0.05 using the lattice sizes and parameters shown in the
figure.
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FIG. 5: (color online). Phase diagram at 〈n〉=0.5, varying
temperature and JAF. Results are shown for a 12× 12 lattice
using both DIAG and TPEM techniques, and for larger lat-
tices using TPEM, as indicated. The origin of the tilting of
the first-order low-temperature FM-Flux line is explained in
the text.

zero-temperature critical JAF was found to be close to
0.03. Raising the temperature, this transition line is not
vertical, but has a tilting. Figure 5 shows that the esti-
mated critical temperatures do not present severe size ef-
fects, and the TPEM can be comfortably used at least up
to 40×40 clusters. The presence of a first-order transition
in the competition between the FM and Flux phases is
in qualitative agreement with several previous investiga-
tions that have shown similar trends both for the one and
two bands models, at any electronic density.2 This tran-
sition is expected to be severely affected by the influence
of quenched disorder, and this issue will be investigated
in the near future.

Sen et al., unpublished
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Blueprints...

localized spin systems

• further study of pyrochlore 
antiferromagnetic Heisenberg model

• quantum vs. thermal fluctuations?

• other systems?

itinerant electron systems

• Hubbard model on frustrated lattices

• electron systems coupled with classical 
degrees of freedom


