Spin Disorder

in a Bulk Triangular Antiferromagnet

Satoru Nakatsuji, Y. Nambu (M2), K. Onuma (M1), Y. Maeno P-68 P-69

Department of Physics, Kyoto University

2D Triangular AFM and Geometrically Frustration

Novel Spin Disordered State on 2D Triangular Lattice in NiGa₂S₄

Impurity Effects, Spin Size Effects

Summary and Future Plans

Triangular Lattice AFM "the only geometrically frustrated 2D Bravais lattice" Ising (Wannier, Hushimi 1950) **Disordered State with** Residual Entropy. 120° spin order, Chirality Classical Quantum Spin Liquid Quantum (Anderson 1973) XY (Miyashita and Shiba 1984) Kosteritz-Thouless type transition, (Z_2) Vortex **Heisenberg** (Kawamura and Miyashita 1984)

Novel Quantum Phases in 2D Triangular Lattice?

How about Experiments?

Triangular Lattice with Low spin ($S \le 1$) Experiments

New Candidates from Japan!

³He thin film absorbed on carbron: O-19 Fukuyama Gapless Spin Liquid, S = 1/2
 (K. Ishida et al. PRL 79, 3451 (1997).
 R. Matsutomi et al. PRL 92, 025301 (2004).)

 κ-(BETS-TTF)₂Cu₂CN₃: O-24 Kanoda Distorted (Anisotropic) triangular lattice Gapless Spin Liquid, S = 1/2 (Y. Shimizu et al. PRL 91, 107001 (2003).)

To our knowledge, no low spin ($S \le 1$) bulk system with exact triangular lattice

Signature of Geometrical Frustration

2D Triangular AFM of Solid ³He

K. Ishida et al. PRL 79, 3451 (1997).

Double Peak in Specific Heat Higher T peak $T \sim \theta_W \sim O(J)$ Short range order

Lower T peak $T \sim \theta_W/10$ High Degeneracy at $T \ll J$ Formation of

Formation of Novel Disordered State Gapless Spin Liquid?

Double Peak in Specific Heat

in NiGa₂S₄

Higher *T* peak $T \sim \theta_{W} \sim O(J)$ Short range order

Lower *T* peak $T \sim \theta_W/10$ High Degeneracy at *T* << *J* Formation of Novel Disordered State?

Bulk 2D Triangular AFM: NiGa₂S₄

P3m1 symmetry above T > 1.5 K No disorder (x-ray, neutron, ICP)

Mott Insulator

2D NiS₂ layer c.f. 1. CoO₂ layer of Na_xCoO₂ yH_2O 2. Mott transition in NiS

Ni distance a = 3.67 Å intra-layer c = 11.99 Å inter-layer

Ni²⁺: $t_{2g}^{6}e_{g}^{2}$ S = 1 Heisenberg spin

S. Nakatsuji, Y. Nambu, H. Tonomura, O. Sakai, S. Jonas, C. Broholm, H. Tsunetsugu, Y. Qiu and Y. Maeno, *Science* **309**, 1697 (2005).

h

No conventional AF order

• $p_{eff} = 2.86 \ \mu_{B} \ (S = 1, 2.84 \ \mu_{B})$ $\theta_{W} = -80 \ K \ (AF)$

• No anomaly except a weak peak around 10 K

- No evidence of LRO in C_P
 Spins remain disordered.
- Two crossover temperatures:
- 1. $T \sim \theta_{W}$: short range order
- 2. $T \sim \theta_{W}/10$: novel phase formation?

Nano-scale short-range order

Collin Broholm, Seth Jonas @ Johns Hopkins, USA

Magnetic neutron scattering at 1.5 K

No resolution limited peaks

Development of the incommensurate correlation near (1/6, 1/6, 0) below 20 K, corresponding to $C_{\rm M}/T$ peak.

Normally, 120° structure with (1/3, 1/3, 0) correlation.

Nano scale correlation short: $\xi = 1/\kappa \sim 2.5$ nm slow: $\tau > 10^{-9}$ sec

Nearly no correlation between the planes: Highly 2D magnet

(1/6,1/6,0) correlation

Twice larger unit cell in comparison with (1/3, 1/3, 0)

Possible origins

- Dominant 3rd nearest neighbor interactions
- → 4 sublattices of 120° order with 2a periodicity
- Multiple spin exchange due to proximity to Metal-Insulator transition

Coherence without magnetic order

 Power Law Behavior $C_{\rm M} \propto T^{\alpha} \alpha = 2.001(5)$ at 0.35 K < T < 4 K $|C_{\rm M}/T \rightarrow 0.0(1)$ mJ/mole K² Similar to 2D AFM LRO **Novel Gapless Linearly Dispersive Mode in 2D**

Coherence Length > 100 nm

•Fragile against Impurities 5% extra Sulfur doping \rightarrow Residual $C_{\rm M}/T$ (0 K)

Moment-Free Excitations

•Insensitive to Field No response even to $B_{\rm c} = k_{\rm B}T_{\rm peak}/\mu_{\rm B}S \sim 7 {\rm T}$

Spin excitation is Not AF short range order

But, Moment Free (Spinless) Clusters

Impurity Effects

➡ P-68 南部雄亮

Nonmagnetic Impurity (Zn: S = 0) Effect

Robust $C_{\rm M} \sim T^2$ behavior Scaling with $\theta_{\rm W}$ $C_{\rm M} \propto \frac{1}{\left|\theta_{\rm w}\right|^2}$

Nambu-Goldstone mode in 2D AFM Symmetry Breaking

Y. Nambu, S. Nakatsuji, Y. Maeno, cond-mat/0511739

NiGa₂S₄: the first 2D triangular lattice with S = 1

>No AF order despite strong AF coupling

Long-Range Coherence due to Symmetry Breaking

Possibility of Novel Type of Magnetic Order or Spin Liquid State