

量子臨界点近傍に現われる 新奇量子現象の解明

2005年12月16日

代表 今田正俊 分担者 鹿野田一司 (東大工) 求幸年 (理研) 中辻知 (京大理) 渡辺真仁 (物性研)

量子臨界点近傍の物理

新しい量子臨界現象 モット転移 ³He単原子層、有機伝導体、遷移金属化合物 電荷秩序転移 有機伝導体、遷移金属酸化物 価数転移 希土類化合物

giant density fluctuation

新奇量子相 ギャップレス量子スピン液体 ³He単原子層、有機伝導体、遷移金属化合物

IVI, INTALDAL

Novel Quantum Phase and Criticality

Takahiro Mizusaki Shinji Watanabe Kota Hanasaki Takahiro Misawa Yohei Yamaji

Masatoshi Imada

Quantum Spin Liquid

Compounds with Geometrical frustration		
Suppression of Large residua	of magnetic order, al entropy	Spin liquid
	<i>S</i> >1/2	S=1/2
Triangular J1-J2	LiCrO ₂ NiGa ₂ S ₄ Nambu, Nakatsuji, Maeno	$\beta'-X[Pd(dmit)_2]_2$ Tamura, Kato $\kappa-(ET)_2Cu_2(CN)_3$ Kanoda (NaTiO ₂ , LiNiO ₂) Li ₂ VO(Si,Ge)O ₄ Melzi et al.
Kagomè	Sr(Cr,Ga) ₁₂ O ₁₉ Obradors et al. Broholm et al.	³ He on graphite Greywall, Elser, Fukuyama Volborthite Hiroi
Spinel Pyrochlore fcc	$(Zn,Li)V_2O_4$ $ZrCr_2O_4$ $R_2Mo_2O_7$ Greedan et al. Taguchi, Tokura et al. Sato et al.	(LiTi ₂ O ₄) Y ₂ Ir ₂ O ₇ Fukazawa,Maeno Sr ₂ CaReO ₆ Wiebe et al.

Gapless spin liquid

triangular lattice

S=1/2 κ -(ET)₂Cu₂(CN)₃ $T_{1,\chi}$ ³He monolayer χ, C

S=1 NiGa₂S₄ χ , *C*, neutron

IVI, INTALDA

A possible interpretation of spin liquid

Long-ranged singlet bonds RVB Gapless spin excitation Finite, nonzero susceptibility

Unbound spinon scattered by sea of dynamical RVB singlets

Incoherent (localized) spinons? No spinon Fermi surface? No fractionalization?

triangular lattice +tiny randomness ⇒ spin glass order by disorder MI(1986) Coupling to lattice

Novel Quantum Criticality

密度ゆらぎの発散を伴う量子臨界

Valence Criticality

Valence instabilities of Ce systems Watanabe Poster07 Ce : γ - α transition T **Ce compounds: (K**) $T_{\rm cp}$ is suppressed (<< $E_{\rm F}$) liquid 1000 Superconductivity 800 cerium $T_{\rm cp}$ $T_{\rm cp}$ emperature (K) T 600 critical point γ CeCu₂Ge₂ CeCu₂Si₂ 400 $CeCu_2(Si_{1-x}Ge_x)_2$ **1st-order** P valence **CeCoIn**₅ 200 transition CeIrIn₅ 20 40 60 80 pressure (kbar) Р **Diverging valence fluctuation** (kbar) "Handbook on the Physics and Chemistry of +Fermi degeneracy Rare Earths", North-Holland (1978) p340

K. Miyake, et al: PhysicaB 259-261 (1999)676

IVI, INADA

Filling Control Transition

phase separation Emery-Kivelson Physica C 209 (1993) 597 critical divergence of compressibility Furukawa and MI JPSJ 61 (1992) 3331

³He monolayer Saunders et al., Fukuyama Cuprates stripe, charge order Tranquada et al. Nature 375 (1995) 561 patch structure in STM Davis et al. (2000)

Phase separation の瀬戸際

モット転移は電子の 電荷(密度)自由度の転移

1990

S

divergence of single length scale ξ ; mean distance of carriers scaling theory & hyperscaling

$$F(\mu) = \xi^{-d-z} f(\xi^{y_{\mu}} \mu)$$

 $y_{\mu} = 4, \quad z = 4$ MI, JPSJ 64 (1995) 2954

1/f, $f_1/f_A D_A$

³He; unusual degeneracy temperature

Casey et al. PRL 90 (2003) /1/15301

Phase Diagram of Mott Transition in the 2D Hubbard model

Advantage of Bandwidth Control MIT

 ★Small energy scale; suppress Multi-furcation
 ★Absence of other orders; AF...
 ★Absence of long-range Coulomb effect
 ⇔ ³He

"Pure" Mott transition arising from short-ranged repulsion

IVI, INTALDAL

Bandwidth Control MIT Ising criticality Limelette et al. (2003)

 $a \rightarrow 0$ Marginally quantum critical point (MQCP) unusual QCP

Unusual Critical Exponents at MQCP

$$\beta = d/2, \ \gamma = 2 - d/2, \ \delta = 4/d, \ \nu = 1/2,$$

z = 4

Ginzburg criterion

$$d + z_t \ge (2\beta + \gamma)/\nu = d + 4$$

All the dimensions are at the upper critical dimension "mean field" is basically correct, while hyperscaling is satisfied

2次元
$$\beta = 1, \gamma = 1, \delta = 2, \nu = 1/2,$$

Kagawa, Miyagawa, Kanoda IVI. IIVIADA

Consequence of Diverging Density Fluctuations

filling control; electron density fluctuation bandwidth control; excitonic fluctuation

$$\chi = (d^2 F / dX^2)^{-1} \sim (aX^{2/d-1} + bX^{4/d-1})^{-1}$$

Marginal quantum critical point; $a \rightarrow 0$

 $\chi \sim X^{1-4/d}$

秩序化に伴うゆらぎとは別の 波数0近傍の独立なゆらぎ

$$\chi_c(q,\omega) = \frac{1}{-i\omega + D_s(K^2 + (q-Q)^2)}$$

large energy scale; Mott gapexample; 2Dcontrast with spin/orbital fluctuations; $J \Leftrightarrow Mott gap$

r-1

Outlook for Super Clean Project

電子やヘリウムの密度自由度が引き起こす 1次転移の消える瀬戸際の物理の確立

Mott charge order valence Lifshitz 1次転移の背景となる 高いエネルギースケール

Summary

Band-width control & filling-control unified description of quantum Mott criticality **Beyond GLW scheme; unusual universality class** d dependent critical exponents bandwidth control transitionでの検証 marginal quantum criticality (MQCP) diverging density (charge) fluctuations large energy scale ~ Mott gap, small qincoherent response up to high energy competing orders (1) electron differentiation \Rightarrow ARPES structure (2) tendency for inhomogeneity

(3) density fluctuations drive non-Fermi liquid properties superconducting mechanism d-wave, high-T_c Outlook

accurate ε (k, ω)

Mott charge order valence Lifshitz

filling control bandwidth control

