A01 New Quantum Fluid Phases Realized by Correlation Control

7. New quantum phases in 2D Helium (³He, ⁴He)

Experimental studies:

<u>Hiroshi Fukuyama</u> (*Dept. of Phys., Univ. of Tokyo*) Masashi Morishita (*Dept. of Phys., Univ. of Tsukuba*)

Theoretical studies:

Masao Ogata (Dept. of Phys., Univ. of Tokyo)

✓. New quantum phenomena near quantum critical points

<u>Masatoshi Imada</u> (*ISSP*, *Univ. of Tokyo*) Kazushi Kanoda (*Dept. of Appl. Phys., Univ. of Tokyo*) Satoru Nakatsuji (*Dept. of Phys., Kyoto Univ.*) Yukitoshi Motome (*Riken*) Shinji Watanabe (*ISSP*, *Univ. of Tokyo*) Satoshi Murakawa Daisuke Tsuji Kenichi Mukai (P-04) Yosuke Matsumoto (ISSP)

2D ³He : Highly correlated Fermion system

Our system : 2nd-layer ³He on graphite

<u>4/7 phase</u> (commensurate phase)

- Mott localized phase A. Casey et al., PRL 90, 115301 (2003)
- Ideal 2D Fermion system with short-range repulsions

densities of 1st layer ⁴He

- = 12.04 nm⁻² for HC samples
- = 11.78 nm⁻² for NMR samples

1st - 2nd layer : almost complete isolation 2nd - 3rd layer : frequent exchanges

M. Roger et al., JLTP **112**, 45 (1998)

Frustrated magnetism in the 4/7 phase

- Absence of finite-*T* phase transitions ··· 2D
- Double peak in C(T) … high frustration
- Gapless excitation

absence of exponential T-dependencies of C(T) and M(T) at very low-T

magnetic ground state : Gapless quantum spin-liquid (QSL)

Physics of gapless quantum spin liquid

Mechanism

Frustration ··· hardcore system on triangular lattice higher correlations at higher densities multiple spin exchange (**MSE**)

U (Coulomb) $\propto r^{-1}$ K (kinetic) $\propto r^{-2}$ U (hard core) $\propto r^{-12}$

Elementary excitation?

spinon (e.g., magnon in systems with LRO)

Effective Hamiltonian?

Ring exchange

Momoi, Kubo

Hubbard Imada, Watanabe

t-J $H_{\text{eff}} = \sum_{P} (-1)^{P} J_{P} P \qquad H = -t \sum_{\langle i,j \rangle,\sigma} c_{i\sigma}^{\dagger} c_{j\sigma} + U \sum_{i} n_{i\uparrow} n_{i\downarrow} \qquad H = -t \sum_{\langle i,j \rangle,\sigma} P(c_{i\sigma}^{\dagger} c_{j\sigma} + h.c.) + J \sum_{\langle i,j \rangle} S_{i} \bullet S_{j}$ Momoi, Kubo Imada, Watanabe Ogata, Koretsune

Strongly correlated 2D fermion systems

Can we dope holes or particles into the gapless QSL?

Possible new quantum phases

- vacancy doped phase?
- density modulated phases?
 domain walls (DW), DW fluid, ...
- exotic magnetic phases?
- 2D superfluid phase? s-wave spin-singlet ... dilute limit p-wave spin-triplet Takahashi-Hirashima (2000) ... R- and K-matrix d-wave spin-singlet ... strongly correlated region Onishi-Miyake (1999) ... paramagnon

vacancy doped phase

Other strongly correlated 2D fermion systems

κ-(BEDT-TTF)₂Cu[N(CN)₂]Cl

High T_c cuprates

- band width control (high pressure)
- triangular lattice
- gapless QSL

- filling control (atom substitution)
- square lattice
- d-wave BCS state

Heat capacity sample cell

NMR sample cell

100 μK ≤ *T* ≤ 80 mK 0 ≤ *B* ≤ 1.2 T

Y. Matsumoto et al., Physica B 329-333, 146 (2003)

S. Murakawa et al., Physica B **329-333**, 144 (2003)

Heat capacities of 2D ³He

low densities ($\rho \leq \rho_{4/7}$)

B = 0 T $A = 556 m^2$

Y. Matsumoto et al., JLTP 138, 271 (2005)

For more recent and unpublished heat capacity data including those at higher densities than $\rho_{4/7}$, please contact Hiroshi Fukuyama <hiroshi@phys.s.u-tokyo.ac.jp>

Heat capacity isotherms of 2D ³He

low densities ($\rho \leq \rho_{4/7}$)

B = 0 T $A = 556 m^2$

Y. Matsumoto et al., Physica B (2006) to be published

For more recent and unpublished heat capacity data including those at higher densities than $\rho_{4/7}$, please contact Hiroshi Fukuyama <hiroshi@phys.s.u-tokyo.ac.jp>

Y. Matsumoto et al., JLTP 138, 271 (2005)

Strong correlation in bulk (3D) liquid ³He

specific heat

D.S. Greywall, PRB **27**, 2747 (1983) FL theory is applicable only to a very low *T*-region ($T \le 50$ mK).

Almost localized model

K.Seiler at al., JLTP 64, 195 (1986)

- spin fluctuations at low-T
- density fluctuations at high-T

Rich quantum phase diagram of 2D ³He on graphite

Four different quantum phases

For more recent and unpublished magnetization data, please contact Hiroshi Fukuyama <hiroshi@phys.s.utokyo.ac.jp>

NMR line width in Regions II-IV

Region-II: NMR spectrum broadens on approaching localization (4/7 phase).

Region-IV: It broadens more rapidly because of large magnetization and mosaic spread of graphite platelets

For more recent and unpublished NMR line width data, please contact Hiroshi Fukuyama <hiroshi@phys.s.u-tokyo.ac.jp>

NMR spectra (FM region)

In the next four years,

Detailed understandings of the new quantum phases

1) Construction of a new nuclear refrigerator specialized for NMR

2) Better substrates ···. ZYX (L ≈ 200 - 400 nm) present: Grafoil (L ≈ 10 - 40 nm)

3) New techniques ··· torsional oscillator, quartz micro-balance, pulsed NMR, SQUID NMR

Search for other quantum phases in different 2D systems ³He on ⁴He bilayer, hydrogen bilayer, Kr monolayer, …..