文部科学省科学研究費補助金特定領域研究
 「スーパークリーン物質で実現する新しい量子
 相の物理」領域発足研究会 (12/15-16,2005)

「超流動ヘリウム3の異方的秩序変数 とその制御」

大阪市立大学	石川(於 六
広島大学	永井 克	彦
東京大学物性研	久保田	実

Anisotropic Superfluid ³He in Some Circumstances

Osamu Ishikawa

Graduate School of Science Osaka City University

general feature

Superfluid ³He (anisotropic order parameter) in narrow space or in complicated structure and/or under rotation

>complicated structure ----> aerogel

harrow space with length scale of D Characteristic length in superfluid ³He coherence length $\xi_0 \sim a$ few tenth nm order parameter healing length $\xi_s \sim \xi_0$ textural healing length $\xi_x \ge 10 \ \mu m \gg \xi_0$ (phase dependent)

Sphere diameter;D

 $\xi_0 < D \leq \xi_x \text{ or } \xi_x < D$

Cylinder diameter; $D \leq \xi_0$ or $\xi_0 < D \leq \xi_x$ or $\xi_x < D$ Thin cylinder $D \leq \xi_0$ or $\xi_0 < D \leq \xi_x$ or $\xi_x < D$ Film thickness; $D \leq \xi_0$ or $\xi_0 < D \leq \xi_x$ or $\xi_x < D$ Slab space $D \leq \xi_0$ or $\xi_0 < D \leq \xi_x$ or $\xi_x < D$ Constraints by boundary cause

(new phase)/ new phase diagram

complicated structure

Aerogel : composed of silica(SiO₂) strands with large porosity (larger than ~ 97%)

Length in aerogel and in superfluid ³He Fermi wave length $\lambda \approx nm$ Silica beads diameter d ~ a few nm Coherence length ξ_0 ~ a few tenth nm Mean distance L between silica strands L; a few tenth nm ~ ξ_0

$$\lambda < d \ll \xi_0 \sim L$$

Aerogel partly destroys superfluidity in liquid ³He / suppression of T_c etc. Aerogel behaves as impurity Possibility of new phase

Superfluidity under rotation Superconductivity in magnetic field Coherence length $\xi < Penetration depth \lambda$ type II superconductor upper/lower critical field Hc_1 , Hc_2 vortex state

Type II superfluid \rightarrow upper/lower critical angular velocity Ωc_1 , Ωc_2 vortex state vortex line in ⁴He vortices with a few <u>core structures</u> in ³He <u>configuration of order parameter vector</u>

Vortex state in ³He under rotation

vortex density
$$n = \frac{2\Omega}{\kappa_0}$$

$$\kappa_0 = \frac{h}{m_4}, \quad = \frac{h}{2m_3}$$

Rotating cryostat can create vortex state (vortices) and can control order parameter vector Also it can be used to detect vortex state or one vortex by combination with another method

Superfluid ³He in aerogel

Suppression of T_c

(by sound and NMR experiments) Isotropic Inhomogeneous Scattering Model (IISM) E.V. Thuneberg et al., *Phys. Rev. Lett.* **80**, 2861 (1998)

We can explain Tc suppression with radius R in IISM model as fitting parameter on two porosity of aerogel (97.5% 98.5%)

Obtained radius R depends on porosity as weak periodic length L_p by neutron scattering measurement do.

New Phase/ New Phase Diagram

A-like phase is an equal spin paring state

B-like phase is a non equal spin paring state

Phase diagram on cooling in 97.5% aerogel by NMR

Phase conversion process

in superfluid state 2.4 MPa

• Two temperature bands are revealed, only where thefirst order phase conversion develops with changing temperatures.

• T_{AB}-band where A-like phase to B-like phase occurs

• T_c -band where B-like phase to A-like phase occurs

Strange phase conversion

In each temperature band, there is *a phase conversion curve* in the graph of the fraction of *A-like phase*.

Each phase conversion occurs along this curve in one direction.

No phase conversion occurs between two temperature bands

Pinning of phase boundary by aerogel ??

Suppression of A-like phase in 97.5% aerogel

Not only suppression of Tc but also suppression of A-like phase in aerogel on warming process is observed.

This is very different from behavior in A phase in another type of confinement in 0.8 μ m thickness film confines between parallel plates.

A-like phase is not A phase?

A like phase is a new phase?

Tipping angle dependent frequency shift in FID signal after an rf pulse

Proposed new phase "robust phase"
A robust phase proposed by I.A. Fomin
explains FID frequencies well

$$d_{yj} = \frac{\Delta}{\sqrt{3}} \Big[\hat{d}_{\mu}(\hat{m}_{j} + i\hat{n}_{j}) + \hat{e}_{\mu}(\hat{l}_{j} + i\hat{p}_{j}) \Big]$$
M.Miura, \cdots , K.Nagai JL TP 138, 153(2005)

$$f^{2} = f_{L}^{2} + \frac{1}{2} f_{rbst}^{2} \quad cw \ NMR$$

$$\Delta f(\beta) = \frac{f_{rbst}^{2}}{f_{L}} \frac{1 + \cos \beta}{8} \qquad pulsed \ NMR$$

$$= \Delta f(0) \frac{1 + \cos \beta}{2}$$

Ø

Vortex state in bulk liquid

Vortex state in narrow space or complicated structure >In thin cylinder (D=100, 200 μ m) A phase # diameter $D \approx$ ten times of dipolar healing length observed signal from new type of vortex core directly a few interesting phenomena >In slab between parallel plates (D=12 μ m) A phase # thickness D ≈ dipolar healing length observed a textural transition and vortices indirectly but no signal from core >In aerogel (98% porosity) B-like phase observed a textural transition and vortices indirectly vortices pinned by aerogel

In thin cylinder of 200 μ m radius

 $\rightarrow \hat{l}$ -vector $\rightarrow V_s$

Mermin-Ho vortex Radial disgyration

R. Ishiguro, et. al., Phys. Rev. Lett. 93, 125301 (2004)

Vortex is formed in cylinder by boundary and does not disappear by itself

Creation and annihilation of vortex

in thin cylinder

Gyromagnetic effect + Memory effect (Einstein de Hass or Barnett effect)

Change of satellite frequency

in Mermin-Ho texture in 100 μ m diameter

Problems of the Intrinsic Angular Momentum (IAM) in A phase

All pairs have the same angular momentum in A phase

(1) all pairs contribute to angular momentum

$$L_{\rm int} = \frac{1}{2}N\hbar$$

(2) Cooper parings occur among particles near the Fermi energy

$$L_{\rm int} = \frac{1}{2}N\hbar \times \frac{T_c}{T_F} \approx \frac{1}{2}N\hbar \times \frac{\Delta}{\varepsilon_F}$$

 (3) cancellation occurs because coherence length is much larger than inter atomic distance La

$$L_{\text{int}} \approx \frac{1}{2} N \hbar \left(\frac{\Delta}{\varepsilon_F} \right) \cdot \frac{L_a}{\xi} \approx \frac{1}{2} N \hbar \left(\frac{\Delta}{\varepsilon_F} \right) \cdot \frac{T_c}{T_F} \approx \frac{1}{2} N \hbar \left(\frac{\Delta}{\varepsilon_F} \right)^2$$

$$L_{\text{int}} \approx \frac{1}{2} N \hbar \left(\frac{\Delta}{\varepsilon_F}\right)^n$$

$$n = 0, \text{ or } 1, \text{ or } 2$$

If n=0,
$$\vec{L}_{int} \approx \vec{L}_{flow}$$

Observable ?

Vortex pinning by aerogel and unpinning by Glaberson-Donnelly instability

M.Yamashita, et al. Phys. Rev. Lett. 94, 07530 (2005)

Future research plans

> in aerogel at rest

phase transition mechanism between A-like and B-like phases
texture in aerogel in A-like and B-like phases
detection of A-like and B-like phases and loss mechanism in
4th sound

> in cylinder under rotation

mechanism of gyromagnetic effect in A phase

> in slab under rotation

Half quantum vortex in A phase?

> in aerogel under rotation

investigate vortex core structure using homogeneous spin

precession