STM/STS Experiments of Sr₂RuO₄ and Related Compounds

Department of Physics, University of Tokyo <u>H. Kambara</u>, Y. Niimi, C. Winkelmann, Hiroshi Fukuyama

Sr₂RuO₄ single crystals are supplied by
*Department of Physics, Kyoto University
*Kyoto University International Innovation Center
K. Takizawa*, H. Yaguchi*, Y. Maeno**

STM/STS for Sr₂RuO₄ and eutectics

- Ultra Low Temperature Scanning tunneling Microscopy/Spectroscopy (STM/STS)
- high special resolution (~ 0.1 nm)
- high energy resolution (~ 10 µeV)
- Observation of Local electronic density of states (LDOS)

LDOS variations in p-wave spin triplet superconductor and related compounds

 $Sr_2RuO_4 (T_C = 1.5 K)$ $Sr_2RuO_4 - Ru (T_C = 3 K)$

Sr₂RuO₄ – Ru (3-K phase)

Surface spin-triplet superconductivity What is the enhancement mechanism in T_c?

Maeno et al., PRL 81, 3765 (1998).

ULT-STM system

Quick turnaround

keeping LT and UHV by bottom loading mechanism

UHV compatibility

One can prepare and analyze clean sample surfaces which are not restricted to cleavable materials.

Performance of ULT-STM (Graphite)

at valley energies between Landau levels

Niimi et al., cond-mat/0511733.

STM on Sr_2RuO_4 surface (1.5-K phase)

Crystal structure of Sr₂RuO₄

5 nm × 5 nm *V* = -0.10 V, *I* = 0.2 nA $T = 47 \, \text{mK}$ 0 2 4 5 x (nm)

Density of point defects varies in every cleavage even in the same batch.

3.5 nm × 3.5 nm V = -0.10 V, I = 0.1 nA

Bright spot shows Sr-atom from Tisubstitution.

Barker et al., Physica B 329-333, 1334 (2003).

Tunnel spectra on Sr₂RuO₄ surface

Spatial variations of the Normal gap

Classification of defects (1.5-K, 3-K phase)

LDOS around circular defects (3-K phase, Type4)

Summary

- "Normal" gap (⊿ ~ 5 meV) is observed on the SrO plane in agreement with the data of Davis' group. But the origin of the gap is still unknown.
- 2. The normal gap is spatially uniform except near the step structure.
- 3. It is not easy to observe the superconducting gap.
- 4. Several point and line defects are observed for both 1.5-K and 3-K phase samples. These defects are classified into four categories by bias-dependent STM images.
- The line defects always go along the <110> directions.
 LDOS varies only in the width of 1 nm.
- 6. Type 2~4 defects exist in only 3-K phase. These defects may be seeds of the Ru-lamellae?

Future work

Search for new superconducting phenomena in *spin triplet superconductor – normal metal junctions by* STS

As one of the subjects, detection of enhanced proximity effect by midgap Andreev resonant state (MARS) predicted theoretically

Tanaka, Kashiwaya and Yokoyama, PRB <u>71</u>, 094513 (2005). Tanaka and Asano, Solid State Physics <u>40</u>, 683 (2005).