

内部自由度を持った超伝導状態に特有の新量子現象 スピン自由度、スピンの超流動性、 時間反転対称性の破れ (カイラル状態)







#### K<sub>2</sub>NiF<sub>4</sub> structure without distortion

c-axis 10 mm

 $T_c = 1.5 \text{ K}$ Coherence length:  $\xi_{ab}(0) = 66 \text{ nm}$ 

"Superclean material in the low temperature limit"

### Candidate Spin-Triplet Superconductors S = 1 Cooper pairing

(0) Superfluid <sup>3</sup>He *p*-wave

#### "Superfluidity of CHARGE and SPIN"

(1) Heavy fermion sc.  $UPt_3$   $UNi_2Al_3 \leftrightarrow UPd_2Al_3$  is clearly singlet. (2) Ruthenate sc.  $Sr_2RuO_4$ (3) Ferromagnetic sc.  $UGe_2$ , URhGe, UIr  $ZrZn_2??$ (4) Q1D organic sc.  $(TMTSF)_2PF_6$ ? (5) others  $PrOs_4Sb_{12}??$ ,  $Na_xCoO_2\cdot yH_2O??$ ,  $CePt_3Si?$ , etc.

Arguably,  $Sr_2RuO_4$  is the first example for which details of the spin-triplet superconductivity are quantitatively characterized.

# Sr<sub>2</sub>RuO<sub>4</sub>: The spin-triplet order parameter has been "determined".

Order parameter:

 $\boldsymbol{d} = \boldsymbol{z} \boldsymbol{\Delta}_0 \left( \boldsymbol{k}_{\boldsymbol{x}} + \boldsymbol{i} \boldsymbol{k}_{\boldsymbol{y}} \right)$ 

Spin part:  $z(S_z = 0)$ :NMR Knight shiftIshida, Kitaoka et al.polarized neutronDuffy, Hayden et al.



pair tunnenling into s-wave sc (selection rule) Liu et al.

Orbital part:  $k_x + ik_y$  (TRS broken, "chiral")  $\mu$ SR (internal field) Luke, Uemura *et al.*, Higemoto *et al.* flux-line lattice (field distribution) Keakey *et al.* 

jump in the transverse US velocity

Lupien; Walker; Sigrist; Okuda *et al.*  $\pi$ -Junction SQUID Nelson, Liu *et al.* 

#### Success of Microscopic Mechanism Theory Based on Realistic Fermi Surfaces



T. Nomura and K. Yamada, J. Phys. Soc. Jpn. **71**, 404 (2002). Also by Kuroki, Aoki *et al.;* Yanase, Ogata *et al*.

cf. Hoshihara, Miyake et al.,

### Research Objectives; Two Approaches

Explore novel superconducting phenomena specific to the spin-triplet superconductivity.

- 1. Control the order parameter by *H*, *P*, etc.
  - $\Rightarrow$  •Rotation of the d-vector
    - Collective motion of the Cooper pairs
    - Superconducting multiple phases
- 2. Explore new superconducting phenomena in the eutectic crystals.
- $\Rightarrow$  ·Surface bound states (Andreev bound states)
  - Proximity effects
  - ·Chiral edge current, etc.







# Superconductivity in Sr<sub>2</sub>RuO<sub>4</sub>: Recent Progres



Spin-triplet SC and *d*-vector

*d*-vector may rotate under H, such that  $d \perp H$ .

 $\pi$ -junction SQUID:

Demonstration of ODD PARITY



#### Gap structure

 $\gamma$  ( $d_{xy}$ ): Active band. Gap min. along (100)

 $\alpha$ ,  $\beta$  ( $d_{yz}, d_{zx}$ ): Passive bands. Gap "zero" along (110)

Deguchi *et al.* (Kyoto)



#### Double transitions

Mechanism is unknown.

Further theoretical studies are needed.

Novel Quantum Phenomena in the Eutectics containing Sr<sub>2</sub>RuO<sub>4</sub>



京都大学 房登真司,橘高俊一郎,矢口宏,前野悦輝 Univ. of Salerno R. Fittipaldi, A. Vecchione

Ruとの共晶: 3-K相
圧力下での増強超伝導
ポスター P45(矢ロ)







# Sr<sub>2</sub>RuO<sub>4</sub>-Ru Eutectic (3-K Phase)



Sr<sub>2</sub>RuO<sub>4</sub>-Ru T<sub>c</sub> ~ 3 K (3-K 相) Sr<sub>2</sub>RuO<sub>4</sub> (*T*<sub>c</sub> = 1.5 K; 1.5-K相)  $cf. Ru (T_c = 0.5 K)$ Interfacial superconductivity around Ru 65 60  $\chi^{"}$  (arb. units) 55 C / T (mJ/K<sup>2</sup>mol) 50 2 45 T(K)40 Non-bulk 35 30 Yaguchi 2 3 0

Temperature (K)

### Enhancement of Superconductivity by Uniaxial Pressure

Meissner volume fractions (ZFC) at 1.8 K and 0.5 GPa: 38% (P//[100]), 4% (P//[001])

Superconductivity above 1.5 K is induced in  $Sr_2RuO_{4}$ .

Mechanism is NOT known. Cf.  $dT_c/dP_c = -0.8$  K/GPa

# Eutectic Crystals of 214 and 327





Sr<sub>2</sub>RuO<sub>4</sub> (214) Spin-triplet SC



# Properties of Sr<sub>3</sub>Ru<sub>2</sub>O<sub>7</sub>



S.A.Grigera, et al., Science 294, 329 (2001).

S. Ikeda *et al.,* J. Phys. Soc. Jpn., (2004).

# Eutectic crystal of Sr<sub>2</sub>RuO<sub>4</sub> and Sr<sub>3</sub>Ru<sub>2</sub>O<sub>7</sub>



KYOTO

#### X-ray spectrum of a "327" piece cut from the 214-327 Eutectic





# Sr<sub>3</sub>Ru<sub>2</sub>O<sub>7</sub>領域の表面写真とX線回折パターン



# Before and After the bulk 214 is removed



# H-T Phase Diagram of the 214-327 Eutectic



A: bulk  $Sr_2RuO_4$ ,

C: very weak superconductivity

#### Estimate of volume fraction



| Sample                                                        | H// ab-plane   | H// c-axis                                                         |
|---------------------------------------------------------------|----------------|--------------------------------------------------------------------|
| "327" from<br>214-327 eutectic<br>(No.7-β)                    | 5 %            | 81 %                                                               |
| Higher quality 327<br>(C642a1a1)                              | 6 %            | 5 %                                                                |
| Lower quality 327<br>(C632b1)                                 | 0.8 %          | 3 %                                                                |
| Apparent "327" fro<br>exhibits an anomo<br>diamagnetic shielo | m the eutectic | Sr <sub>2</sub> RuO <sub>4</sub> Sr <sub>3</sub> Ru <sub>2</sub> C |

# Speculations



Two well-separated weak sc signatures:

#### ac susceptibility



**"B":** properties of **214 micro-domains**? Robust against  $H_{DC}$ , very sensitive to  $H_{AC}$ 

"C": properties of proximity-junction network? Very sensitive to both  $H_{DC}$  and  $H_{AC}$ 

# For d-wave: $\pi$ -junction loop in high- $T_c$ cuprates





Tricrystal Ring of YBCO Tsuei, Kirtley *et al.,* PRL **73**, 593(1994).

Braunisch et al., PRL (1992) Sigrist and Rice, JPSJ (1992). FIG. 2. ZFC and FC signals of a ceramic Bi-2:2:1:2 sample exhibiting the paramagnetic Meissner effect (PME).

Wohlleben effect: positive susceptibility due to  $\pi$ -junction loops among randomly-oriented grains.

# **Eutectic Systems: Conclusions**

Ruとの共晶: 3-K相
圧力下での増強超伝導
1.8 K (>bulk T<sub>c</sub>)での
体積分率が40%にも達する。
機構未解明

**∙ →** 10 μm 2.Sr<sub>3</sub>Ru<sub>2</sub>O<sub>7</sub>との共晶:

超伝導近接ネットワーク

●見かけSr<sub>3</sub>Ru<sub>2</sub>O<sub>7</sub>の領域でも弱 磁場では80%の反磁性遮蔽 おそらくSr<sub>2</sub>RuO<sub>4</sub>のグレイン結合

0-junctionsのループ

~ <del>60</del> μm

これらを舞台に スピン三重項の 特性を引き出せるか?