

Experimental study of atomic Bose-Einstein condensates with internal degrees of freedom

Department of Physics, Gakushuin University

Takuya Hirano, Takeshi Kuwamoto Hayato Usuda, Kohei Hamazaki, Masafumi Iwata, Yuki Nara

Outline

- 1. Motivation
- 2. Experimental apparatus
- 3. Atomic BEC with internal degrees of freedom
 - Dynamical Properties of ⁸⁷Rb Spin-2 BEC
 - Optical Confinement of Binary BEC
 - Vortex Formation via magnetic field reversal
- 4. Summary

Our point of view

Research on atomic BEC

Quantum optics atom laser, atom chip..

Also in atoms vortex, spinor...

Qualitative phenomena

 VS Condensed matter physics new quantum fluid.
VS Distinctive or unique dynamics, ?
VS Quantitative theory

Experimental Setup

Making of atomic BEC

Time Of Flight measurement of atomic BEC

Critical temperature : ~500nK

Atoms in a magnetic trap

No spin degrees of freedom in a Magnetic trap

Atoms in an optical trap

Optical trap potential

 α : polarizability, E :electric field P : laser power

$$\Delta$$
: detuning (f_{laser}-f_{resonace})

spin degrees of freedom are liberated in an optical trap

Setup of Optical Trap

Lifetime of BEC in Optical Trap - Stretched State (F=2, m_F=-2) -

Manipulation of Spin States

Creation of BEC in $m_F = 0$ state

We could prepare highly polarized (almost pure) $m_F=0$ BEC. Transfer rate > 90%

Decay of F=2, $m_F=0$ BEC in OT at B = 1.5G

Atoms in BEC initially polarized in F=2, $m_F=0$ state.

Magnetic field dependence of spin-mixing dynamics

Evolution of Condensates in Optical Trap

Relative Populations of Each Component after 70-ms Evolution - Magnetic Field Dependence -

If the $F = 2^{87}$ Rb BEC has <u>anti-ferromagnetic properties</u>, the mixture of $\underline{m_F} = -2$ and $\underline{m_F} = +2$ is one of the ground states at a zero magnetic field. [M.Ueda & M.Koashi, PRA, 65, 063602 (2002)]

Vortex Formation via magnetic field reversal

PHYSICAL REVIEW A 61 063610

Normal BEC

Isoshima et al. Phys. Rev. A 61, 063610 (2000)

Summary

• Dynamical Properties of ⁸⁷Rb Spin-2 BEC

Decay at various magnetic field strengths

- \rightarrow Spin relaxation, population oscillation
- \rightarrow Antiferromagnetic
- Optical Confinement of Binary BEC
- Vortex Formation via magnetic field reversal Charge 4 vortex, up to 10 msec

Future prospect

- **Coherent collision in F=2 BEC**
- Dymanics in binary BEC: spin and external degrees of freedom Coreless vortex, spin texture