特定領域「新量子相の物理」領域発足研究会 15 Dec. 2005

Quantum Turbulence in Superfluid ⁴He Generated by a Vibrating Wire

Osaka City University

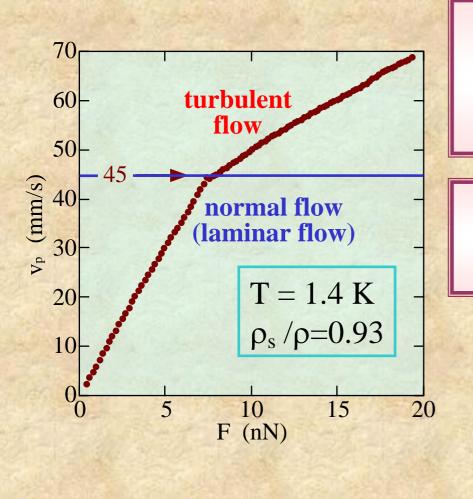
Hideo Yano

Osaka City University Naoto Hashimoto Azusa Handa Ken Obara Osamu Ishikawa Tohru Hata

Flow of superfluid ⁴He generated by a vibrating wire

Motivations

- > How dose the flow around the wire develop into turbulence ?
- ➢ Vortex dynamics in the ac flow of superfluid ⁴He

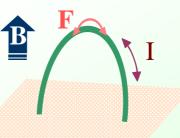

Response of the vibrating wire at low temperatures

- Resonance frequency => Effective wire diameter
- Vortex dynamics
- Switching behavior

Critical velocity

Temperature dependence => Phase diagram

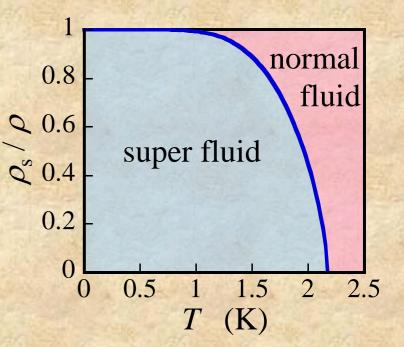
Response of a Vibrating Wire in Superfluid 4He

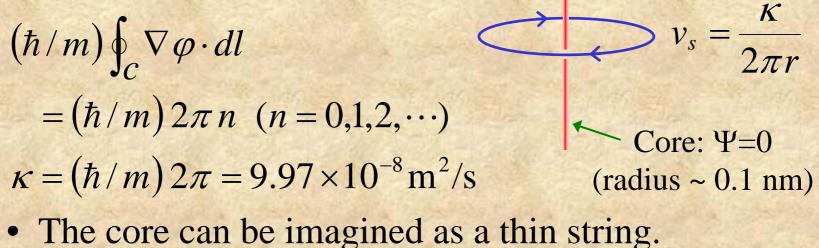


The laminar flow and the turbulent flow are clearly separated at a critical velocity v_c .

 $v_c = 45 \text{ mm/s} << 60 \text{ m/s}$

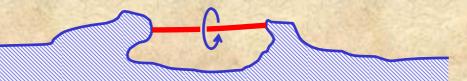
(: vortex nucleation velocity)


Vibrating Wire

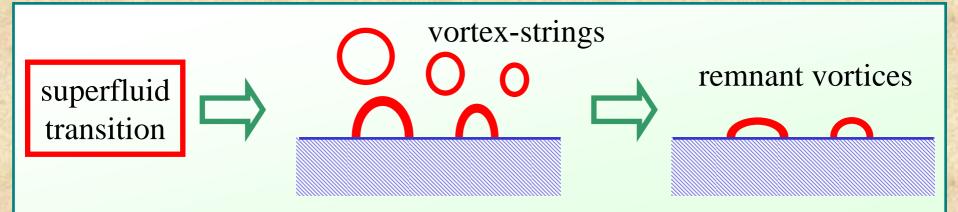

NbTi wire (ø 13µm)

Superfluid Helium-4

- order parameter: $\Psi = \phi e^{i\phi}$
- density: $\rho_s / \rho = |\Psi|^2$
- velocity: $v_s = (\hbar/m) \nabla \varphi$


Quantized Vortex

Vortex String in Superfluid Helium-4


- Quantized circulation prevents the core from becoming a superfluid.
- a ring-shaped string or a string attached to a boundary

- A ring string immediately disappears. (Interacting to normal fluid, Cascade process)
- A string still remains on a boundary.

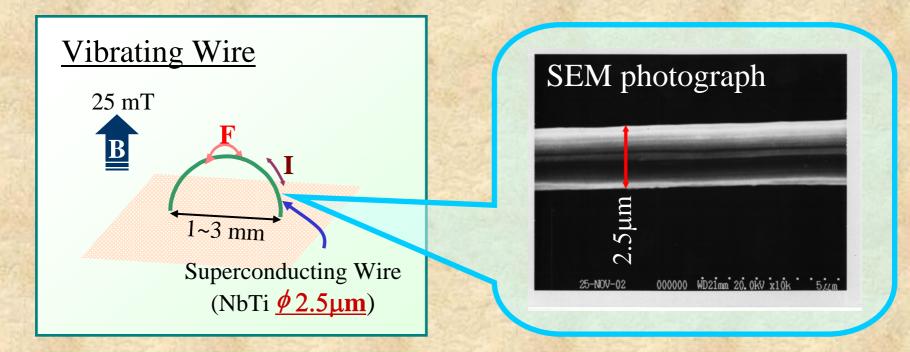
Possible explanation of the vortex creation in turbulence


1. Nucleation of vortex strings through the superfluid transition

2. Unstable expansion of a vortex string (Glaberson Donnelly instability)

Superfluid flow: v $v_s \approx \frac{\kappa}{4\pi r_0} [\ln(8r_0/\xi) - \frac{1}{4}]$ $v_s \approx 45 \text{ mm/s} \rightarrow r_0 = 2.1 \text{ }\mu\text{m}$ $(r_0: \text{ radius of the string})$

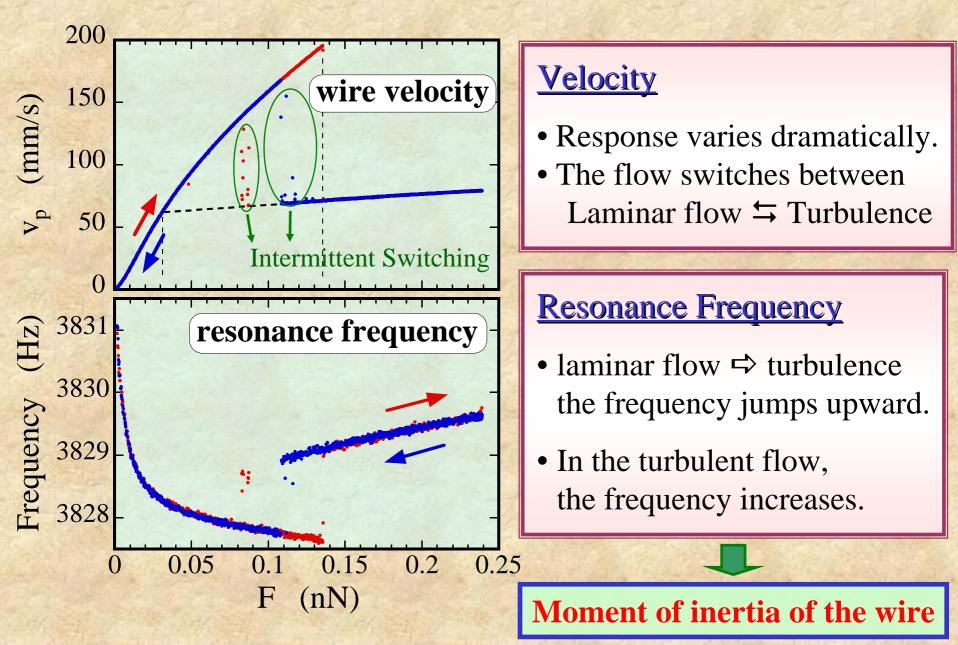
Possible image of vortex strings on a vibrating wire



Motivation

- > How does the flow around the wire develop into turbulence?
- \succ Vortex dynamics in the ac flow of superfluid ⁴He.

⇒ The response of a vibrating wire at low temperatures (~ 30 mK).


<u>Vibrating wires for the turbulence study</u>

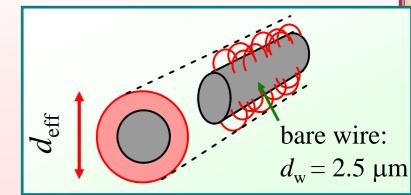
Vibrating Wires

prepared: 5 vibrating wires shape: a half circle wire diameters: $\phi 2.5 \ \mu m$ resonance frequencies: 600 ~ 4,000 Hz Q values: 1300 ~ 1700 (measured at 4.2 K in vacuum)

Velocity and Resonance Frequency at 30 mK

Resonance Frequency with no normal fluid

$$\frac{f_{He}}{f_{vac}} = \left(\frac{\rho_w d_w^2}{(\rho_w + \rho_s) d_w^2}\right)^{1/2} \qquad f_{He}, f_{vac} : \text{frequency with and without He} \\ \rho_w, \rho_s : \text{wire and superfluid density} \\ d_w : \text{wire diameter (2.5 \ \mu\text{m})}$$


- at $v_p = 60 \text{ mm/s}$ $f_{He} = 3828.3 \text{ Hz}, f_{vac} = 3962.0 \text{ Hz}, \rho_s = 0.14513 \text{ g/cm}^3$ $\Rightarrow \rho_w = 2.042 \text{ g/cm}^3 < \rho_{\text{NbTi}} = 6.3 \text{ g/cm}^3$: too small !
- Assuming: A vortex string behaves like a wall against a superfluid current. [Vinen et al, JLTP <u>135</u>, 423 (2004)]

$$(d_{eff}: wire + vortex strings)$$

$$\Rightarrow d_{eff} = 3.6 \ \mu m$$

$$(d_w = 2.5 \ \mu m, \ \rho_w \sim 6.3 \ g/cm^3)$$

$$(in \ He: \rho_w d_w^2 + \rho_s (d_{eff}^2 - d_w^2) + \rho_s d_{eff}^2)$$

FUTURE WORKS

Vortex dynamics in the ac flow of superfluid helium

• Vortex state on a boundary

► Temperature, frequency, wire thickness, ...

- Switching phenomenon between laminar and turbulent flow
 Statistics analysis, ...
- Dissipation process of vortices
- Vortex dynamics in superfluid helium-3
 - Vortex dynamics in ac flow generated by a vibrating wire
 - Vortex under rotation Helsinki group