Ground State of ${ }^{3} \mathrm{He}$ Atoms Confined in a Narrow Tube

D. Hirashima, Nagoya University

1. Ground state of ${ }^{3} \mathrm{He}$ atoms confined in a narrow tube

> Experiment by Ishimoto-Wada's group
> (J. Taniguchi et al. PRL 94('05) 065301.)
2. Zero point of motion of quantum particles
3. How to polarize a few electrons (without a magnetic field)

Multiple spin exchanges

1. ${ }^{3} \mathrm{He}$ "liquid" confined in nanopores (diameter $\sim 28 \mathrm{~A}$)
(J. Taniguchi et al, PRL. 94 ('05) 065301.)
(1) Specific heat linear in T, $\mathrm{C} \sim \gamma \mathrm{T}$, at low temperatures.
(2) Dimensional crossover from 1D-like state at low T to 2 D -like state at higher T .
(3) Density dependence of γ is a puzzle, disagreeing with what is expected for 1D "Fermi liquid".
2. Inhomogeneity of pore diameter ???

+ free fermions
M. W. Cole et al ('05)

2. Condensation into a liquid state ???
Y. Okaue, Y. Saiga \& D. Hirashima

$$
H=-\frac{\hbar^{2}}{2 m} \sum_{i=1}^{N} \nabla_{i}^{2}+\frac{1}{2} \sum_{i \neq j}^{N} V_{\mathrm{int}}\left(r_{i j}\right)+\sum_{i=1}^{N} V_{\text {adsorp }}\left(r_{i}\right)
$$

$$
V_{\text {int }}(r)=\text { Lennard }- \text { Jones, Aziz, or Korona potential. }
$$

For ${ }^{3} \mathrm{He}$, the quantum parameter $\quad \eta=\frac{\hbar^{2}}{m \sigma^{2} \varepsilon}=0.24$

$$
\sigma: \text { hardcore diameter, } \varepsilon: \text { potential depth }
$$

The critical value of the quantum parameter for the formation of a two-body bound state is

$$
\eta_{c}=0.179
$$

in 3 D and 1D.

No ${ }^{3} \mathrm{He}$ dimer in 3 D and 1 D .

Ground state of 3 He atoms in a narrow tube: $\mathrm{N}=60-108$

Variational Monte Carlo method

Binding energy and condensation density

Condensation into a liquid state

$$
\text { at } \quad R>4 \AA .
$$

Binding energy (per particle)

$$
\sim 20 \mathrm{mK}
$$

Interparticle distance $\sim 15 \AA$
open symbols: no adsorption potential closed symbols: adsorption potential

Two ${ }^{3} \mathrm{He}$ atoms in quasi-one dimension

No bound state in 1D \& 3D, but Confinement-induced bound state

In d-Dimensional fermion systems,

Kinetic energy $\quad\langle K\rangle / N \propto n_{d}{ }^{2 / d}$
$R(A)$: pore radius
Y. Okaue and D. Hirashima, 2005.

Potential energy
$\langle V\rangle / N \propto n_{d}$

In (quasi-) $1 \mathrm{D},<\mathrm{K}>/ \mathrm{N} \lll \mathrm{V}>/ \mathrm{N}$ in the low density limit, $\mathrm{n}_{1} \rightarrow 0$.

Cf. Confinement-induced resonance in ultracold atoms trapped in a quasi-1D potenatial. [M. Olshanii, ('98), T. Bergeman et al. ('03)]

At finite temperatures !!!!!

No phase transition at a finite temperature.
Uniform gas phase (with large density fluctuations) at finite T.

Decrease in γ is seen in a rather dense region.

Inhomogeneity ?????
Distribution of pore diameter, adsorption potential

Distribution of the binding energy E_{0}
Adsorption centers
2. Zero-point motion of quantum particles:

Solidification of quantum gas (liquid)
Hydrogen molecules adsorbed on graphite [H. Wiechert ('91)]
Commensurate phase $\sqrt{3} \times \sqrt{3}$

$$
\begin{array}{lll}
\mathrm{H}_{2} & T_{\text {melt }}=20.44 \mathrm{~K} & \text { Lighter molecules solidify at a higher } \\
\mathrm{D}_{2} & T_{\text {melt }}=18.1 \mathrm{~K} & \text { temperatures. }
\end{array}
$$

$$
\text { cf. }{ }^{3} \mathrm{He},{ }^{4} \mathrm{He} \quad T_{\mathrm{melt}} \approx 3 \quad \mathrm{~K}
$$

Quantumness (zero point motion) promotes localization ??
cf. Quantum localization (Tsuneyuki, Imada) Quantum melting of domain walls (Momoi)

Solidification of quantum particles adsorbed on a periodic substrate

Hirashima, Momoi \& Takagi, JPSJ 72 ('03) 1446.
Path integral MC (distinguishable particles)
$q=\frac{\hbar^{2}}{2 m a^{2} \varepsilon}$
a : lattice constant
$\sigma:$ hardcore diameter
Lighter mass promotes solidification.
3. How to polarize a few electrons (without a magnetic field) in quantum structures (dots)
Control of shape of a dot \rightarrow Control of exchange paths Three electrons in quantum structures (J. Usukura, Y. Saiga \& D. Hirashima, JPSJ 74 (05) 1231)

Quantum ring

$$
a_{\text {out }}=2 a_{\mathrm{B}}^{*} \quad \mathrm{a}_{\text {in }}\left[\mathrm{a}_{\mathrm{B}}^{*}\right]
$$

$$
\Delta E=E_{3 / 2}-E_{1 / 2}
$$

Harmonic confinement

Three electrons on a ring (no two-electron exchanges)
\longrightarrow Fully polarized state $\mathrm{S}=3 / 2$
(C. Herring, PR B 11 ('75) 2056.)

1. Ground state of ${ }^{3} \mathrm{He}$ atoms confined in a narrow tube
2. Zero point of motion of quantum particles
3. How to polarize a few electrons (without a magnetic field)
