Search for Novel Quantum Phenomena in ⁴He Confined in Nano – Porous Media

(ヘリウムナノ構造における新しい量子多体現象)

Keiya Shirahama (白浜 圭也) Department of Physics, Keio University

The Outline of Our Research

Outline

 Helium Nanostructures
 Quantum Phase Transition of ⁴He in a Nano - porous Glass
 Heat Capacity Measurement
 H₂ Confined in the Nano - porous Glass
 "Superfluidity" of Solid ⁴He (Supersolidity)

Collaborators

Keio University (慶應義塾大学):

(柴山義行)
(山本恵一) (曽我部吉弘)
(石井洋典)

³He-⁴He Mixtures Pore Control by Gas Adsorption Heat Capacity Measurement

Search for BEC of H_2

Solid ⁴He "Superfluidity"

University of Electro-Communications (電気通信大学):

(近藤大司)

(高田俊一)

M. Suzuki	(鈴木勝)
J. Taniguchi	(谷口淳子
T. Kobayashi	(小林利章
S. Fukazawa	(深沢聡)

University of Delaware

M. Kondo

S. Takada

H. Glyde & Coworkers

Ultrasound Studies Solid ⁴He "Superfluidity"

Neutron Scattering

He Nanostructures: A model system of strongly correlated Bosons in a periodic or random potential

Physics of (Over) pressurized Liquid ⁴He in Porous Media

Phase Diagram of ⁴He in Porous Vycor Glass

- 3D Random Network of Pores
- 7 nm in Pore Diameter
- Shift of Freezing Curve
- Shift of the λ Line (~0.2K)

Cao et al. *PRB* **33**, 106 (1986) Adams et al. *PRL* **52**, 2249 (1984)

How is the superfluidity suppressed as the Pore Size DECREASES ?

⁴He in a Nano-porous Glass

 Superfluidity: Torsional Oscillator Study (*PRL* 93, 075302 (2004))
 Liquid – Solid Phase Boundary: Pressure Study

⁴He in Porous Gelsil Glass

- 3D Network of Nanopores
- Pore Diameter : 2.5 nm
 - 1/3 of Vycor Pore
 - ⁴He atoms in Pores :
 - 7~8 atoms in radial
 - 40 atoms in cross section

Experimental Techniques

Isochoric Pressure

Suppression of Superfluidity

Above bulk freezing pressure

T_c decreases by pressurization
Lowest *T_c* ~ 35 mK : at *P* ~ 3.3 MPa
3.5 < *P* < 5.0 MPa : No superfluidity

Shirahama Lab.

Continuous Reduction of Tc and ρs

 T_c and ρ_s continuously decrease to zero, at $P_c \sim 3.4$ MPa.

Determination of the Liquid - Solid Transition

Phase Diagram

A Superfluid – Nonsuperfluid – Solid quantum phase transition is driven at 0 K, by increasing pressure (density)

Shirahama Lab.

Helium is a Strongly Correlated System

- "Hard Core" interrupts atom exchanges.
- Example :
 Negative Slope of the "Lambda" Line

Superfluidity = BEC + Correlation

Shirahama Lab.

Possible Scenario: Phase Fluctuation and Localized BEC

Analogy to Josephson – Junction Arrays

Interruption of atom exchanges at the apertures results in phase fluctuation.

2D Josephson Junction Arrays

Interruption of the Cooper-pair tunneling by the Coulomb blockade effect results in phase fluctuation.

Global Phase Diagram

Crowell et al., PRB 55,12620 (1997)

The ⁴He – Nanopore system can be characterized by two quantum critical points.

Shirahama Lab.

Analogy to High – Tc Cuprates & Granular Superconductors

V. J. Emery, S. A. Kivelson, *Nature* **374**, 434 (1995)

L. Merchant, J. Ostrick, R. P. Barber, R. C. Dynes, PRB 63 134508 (2001)

Localized BEC > Pseudo Gap State

Elucidating the Nature of the Localized BEC

Ultrasound

Heat Capacity

Heat Capacity of ⁴He in Porous Vycor Glass

G. Zassenhaus and J. D. Reppy, PRL 83, 4800 (1999)

A broad peak below bulk T_{λ}

Evidence for Localized BEC ?

A small peak is observed at T_c which is determined by torsional oscillator.

LBEC: Similar to ⁴He Droplets and Clusters?

E. Syskakis, F. Pobell, H. Ullmaier, PRL 55, 2964 (1985) S. Grebenev, J. P. Toennies, A. F. Vilesov, Science 279, 2083 (1998)

⁴He Droplets(20~60A) in a Cu Foil

FIG. 2. A typical TEM picture of underfocused helium bubbles in Cu. The bubbles appear as light areas and are clearly faceted.

Rounded λ Peak below bulk T_{λ}

FIG. 1. Heat capacity of helium confined in bubbles in Cu after vacuum annealing of the specimens at the temperatures given in the figure. The continuous lines show the heat capacity of the corresponding mass of bulk liquid helium at saturated vapor pressure (SVP).

³He/⁴He(60atoms)/OCS

Fig. 3. Simple schematic picture of an OCS molecule (yellow, black, and red) with a surrounding duster of 60 4He atoms (purple) inside a large 4He droplet (blue). This model corresponds to the spectrum shown in Fig. 2E, where superfluidity becomes apparent.

Heat Capacity of ⁴He in the 25A Pores

山本恵一、ポスター発表

Puzzle in Ultrasound Experiment

鈴木勝、次の講演 小林利章、ポスター発表

9 MHz Ultrasound Study

Torsional Oscillator : *f* ~ 2 kHz
Frequency: 3 orders of magnitude higher
Same batch, but different heat treatment

 Simultaneous measurement of Ultrasound and Tor. Osc.
 Measurement with new samples (2.5 and 3.3 nm)

Quantum Fluids in Nanopores

Solidification is suppressed. (supercooling)
 Good for emergence of quantum phenomena (superfluidity)

Shirahama Lab.

2. Superfluidity is also suppressed, but localized BEC's prevail.

Possible Phase Diagram of H₂ in Nanopores

石井洋典、ポスター発表

Suppression of Triple Point ? No Superfluidity, but LBEC

Pressure of H₂ in Nano – Porous Glass

石井洋典、ポスター発表

The pressure cell is currently improved (Ishii, Suzuki)

Shirahama Lab.

"Superfluidity" in Solid ⁴He?

E. Kim and M. H. W. Chan, Nature **427**, 225 (2004); Science **305**, 1941 (2004) Physics Today, April & November 2004, パリティ 2004/7, 2005/1月号 (白浜訳)

Observation of Non-Classical Rotational Inertia

"The first independent observation outside of Penn State" (H. Kojima)

Summary and Outlook

- 1. Quantum Phase Transition in ⁴He Nanostructures
- 2. Localized BEC Separation of Superfluidity and BEC -
- 3. Heat Capacity LBEC, Excitation -
- 4. Ultrasound Discrepancy with the Torsional Osc.
- 5. H₂ Experiment Application of the LBEC concept -
- 6. Supersolid ⁴He Pressurized helium is intriguing !

Regular porous structure (HMM3, provided by S. Inagaki)
 Pore size control by Kr absorption
 Effect of ³He

